3 research outputs found

    Attenuation and Immunogenicity of a Live High Pathogenic PRRSV Vaccine Candidate with a 32-Amino Acid Deletion in the nsp2 Protein

    No full text
    A porcine reproductive and respiratory syndrome virus (PRRSV) QY1 was serially passed on Marc-145 cells. Virulence of different intermediate derivatives of QY1 (P5, P60, P80, and P100) were determined. The study found that QY1 had been gradually attenuated during the in vitro process. Pathogenicity study showed that pigs inoculated with QY1 P100 and P80 did not develop any significant PRRS clinic symptoms. However, mild-to-moderate clinical signs and acute HP-PRRSV symptoms of infection were observed in pigs inoculated with QY1 P60 and P5, respectively. Furthermore, we determined the whole genome sequences of these four intermediate viruses. The results showed that after 100 passages, compared to QY1 P5, a total of 32 amino acid mutations were found. Moreover, there were one nucleotide deletion and a unique 34-amino acid deletion found at 5′UTR and in nsp2 gene during the attenuation process, respectively. Such deletions were genetically stable in vivo. Following PRRSV experimental challenge, pigs inoculated with a single dose of QY1 P100 developed no significant clinic symptoms and well tolerated lethal challenge, while QY1 P80 group still developed mild fever in the clinic trial after challenge. Thus, we concluded that QY1 P100 was a promising and highly attenuated PRRSV vaccine candidate

    Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) strains in China

    Get PDF
    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration with high mortality rates in swine. It has become increasingly problematic in China. Since the nucleocapsid (N) protein is highly conserved, it is a candidate protein for early diagnosis and vaccine development. In this study, the N genes of 15 PEDV strains were amplified by RT-PCR and cloned into the pMT-19T vector, sequenced, and compared to each other as well as to PEDV reference strains. The nucleotide sequences of the N gene of the Chinese PEDV strains consist of 1326 nucleotides and encode a 441-aa-long peptide. The nucleotide sequences of the fifteen PEDV strains in our study were 96.1-100 % identical to each other, and the deduced amino acid sequences were 94.8-100 % identical. Sequence comparison with other PEDV strains selected from GenBank revealed that their nucleotide sequences were 94.2-99.7 % identical to those of the Chinese PEDV strains, and their deduced amino acid sequences were 94.1-99.5 % identical. In addition, the fifteen strains showed a high degree of nucleotide sequence identity to the early domestic strains (98.4-99.7 %) except the LZC strain, but less sequence identity to the vaccine strain (CV777) used in China (94.7-97.7 %). Phylogenetic analysis showed that the Chinese PEDV strains are composed of a separate cluster including three early domestic strains (JS-2004-02, LJB/03 and DX) but differ genetically from the vaccine strain (CV777) and the early Korean strains (Chinju99 and SM98)
    corecore