4 research outputs found

    Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study

    No full text
    Early neurologic deterioration (END) is a common and feared complication for acute ischemic stroke (AIS) patients treated with mechanical thrombectomy (MT). This study aimed to develop an interpretable machine learning (ML) model for individualized prediction to predict END in AIS patients treated with MT. The retrospective cohort of AIS patients who underwent MT was from two hospitals. ML methods applied include logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The area under the receiver operating characteristic curve (AUC) was the main evaluation metric used. We also used Shapley Additive Explanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) to interpret the result of the prediction model. A total of 985 patients were enrolled in this study, and the development of END was noted in 157 patients (15.9%). Among the used models, XGBoost had the highest prediction power (AUC = 0.826, 95% CI 0.781–0.871). The Delong test and calibration curve indicated that XGBoost significantly surpassed those of the other models in prediction. In addition, the AUC in the validating set was 0.846, which showed a good performance of the XGBoost. The SHAP method revealed that blood glucose was the most important predictor variable. The constructed interpretable ML model can be used to predict the risk probability of END after MT in AIS patients. It may help clinical decision making in the perioperative period of AIS patients treated with MT

    Dynamic and visual nomograms to online predict unfavorable outcome of mechanical thrombectomy for acute basilar artery occlusion

    No full text
    Abstract Background The evidence of mechanical thrombectomy (MT) in basilar artery occlusion (BAO) was limited. This study aimed to develop dynamic and visual nomogram models to predict the unfavorable outcome of MT in BAO online. Methods BAO patients treated with MT were screened. Preoperative and postoperative nomogram models were developed based on clinical parameters and imaging features. An independent dataset was collected to perform external validation. Web‐based calculators were constructed to provide convenient access. Results A total of 127 patients were included in the study, and 117 of them were eventually included in the analysis. The nomogram models showed robust discrimination, with an area under the receiver operating characteristic (ROC) of 0.841 (preoperative) and 0.916 (postoperative). The calibration curves showed good agreement. The preoperative predictors of an unfavorable outcome were previous stroke, the National Institutes of Health Stroke Scale (NIHSS) at admission, and the posterior circulation Alberta Stroke Program Early Computed Tomography Score (pc‐ASPECTS). The postoperative predictors were previous stroke, NIHSS at 24 h, and pc‐ASPECTS. Conclusion Dynamic and visual nomograms were constructed and validated for the first time for BAO patients treated with MT, which provided precise predictions for the risk of an unfavorable outcome. The preoperative model may assist clinicians in selecting eligible patients, and the postoperative model may facilitate individualized poststroke management
    corecore