182 research outputs found
A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction
In spite of its importance, passenger demand prediction is a highly
challenging problem, because the demand is simultaneously influenced by the
complex interactions among many spatial and temporal factors and other external
factors such as weather. To address this problem, we propose a Spatio-TEmporal
Fuzzy neural Network (STEF-Net) to accurately predict passenger demands
incorporating the complex interactions of all known important factors. We
design an end-to-end learning framework with different neural networks modeling
different factors. Specifically, we propose to capture spatio-temporal feature
interactions via a convolutional long short-term memory network and model
external factors via a fuzzy neural network that handles data uncertainty
significantly better than deterministic methods. To keep the temporal relations
when fusing two networks and emphasize discriminative spatio-temporal feature
interactions, we employ a novel feature fusion method with a convolution
operation and an attention layer. As far as we know, our work is the first to
fuse a deep recurrent neural network and a fuzzy neural network to model
complex spatial-temporal feature interactions with additional uncertain input
features for predictive learning. Experiments on a large-scale real-world
dataset show that our model achieves more than 10% improvement over the
state-of-the-art approaches.Comment: https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.1
Unpacking the Ethical Value Alignment in Big Models
Big models have greatly advanced AI's ability to understand, generate, and
manipulate information and content, enabling numerous applications. However, as
these models become increasingly integrated into everyday life, their inherent
ethical values and potential biases pose unforeseen risks to society. This
paper provides an overview of the risks and challenges associated with big
models, surveys existing AI ethics guidelines, and examines the ethical
implications arising from the limitations of these models. Taking a normative
ethics perspective, we propose a reassessment of recent normative guidelines,
highlighting the importance of collaborative efforts in academia to establish a
unified and universal AI ethics framework. Furthermore, we investigate the
moral inclinations of current mainstream LLMs using the Moral Foundation
theory, analyze existing alignment algorithms, and outline the unique
challenges encountered in aligning ethical values within them. To address these
challenges, we introduce a novel conceptual paradigm for aligning the ethical
values of big models and discuss promising research directions for alignment
criteria, evaluation, and method, representing an initial step towards the
interdisciplinary construction of the ethically aligned AI
This paper is a modified English version of our Chinese paper
https://crad.ict.ac.cn/cn/article/doi/10.7544/issn1000-1239.202330553, intended
to help non-Chinese native speakers better understand our work
- …