67 research outputs found

    Membership Inference Attacks and Defenses in Neural Network Pruning

    Full text link
    Neural network pruning has been an essential technique to reduce the computation and memory requirements for using deep neural networks for resource-constrained devices. Most existing research focuses primarily on balancing the sparsity and accuracy of a pruned neural network by strategically removing insignificant parameters and retraining the pruned model. Such efforts on reusing training samples pose serious privacy risks due to increased memorization, which, however, has not been investigated yet. In this paper, we conduct the first analysis of privacy risks in neural network pruning. Specifically, we investigate the impacts of neural network pruning on training data privacy, i.e., membership inference attacks. We first explore the impact of neural network pruning on prediction divergence, where the pruning process disproportionately affects the pruned model's behavior for members and non-members. Meanwhile, the influence of divergence even varies among different classes in a fine-grained manner. Enlighten by such divergence, we proposed a self-attention membership inference attack against the pruned neural networks. Extensive experiments are conducted to rigorously evaluate the privacy impacts of different pruning approaches, sparsity levels, and adversary knowledge. The proposed attack shows the higher attack performance on the pruned models when compared with eight existing membership inference attacks. In addition, we propose a new defense mechanism to protect the pruning process by mitigating the prediction divergence based on KL-divergence distance, whose effectiveness has been experimentally demonstrated to effectively mitigate the privacy risks while maintaining the sparsity and accuracy of the pruned models.Comment: This paper has been accepted to USENIX Security Symposium 2022. This is an extended version with more experimental result

    PATROL: Privacy-Oriented Pruning for Collaborative Inference Against Model Inversion Attacks

    Full text link
    Collaborative inference has been a promising solution to enable resource-constrained edge devices to perform inference using state-of-the-art deep neural networks (DNNs). In collaborative inference, the edge device first feeds the input to a partial DNN locally and then uploads the intermediate result to the cloud to complete the inference. However, recent research indicates model inversion attacks (MIAs) can reconstruct input data from intermediate results, posing serious privacy concerns for collaborative inference. Existing perturbation and cryptography techniques are inefficient and unreliable in defending against MIAs while performing accurate inference. This paper provides a viable solution, named PATROL, which develops privacy-oriented pruning to balance privacy, efficiency, and utility of collaborative inference. PATROL takes advantage of the fact that later layers in a DNN can extract more task-specific features. Given limited local resources for collaborative inference, PATROL intends to deploy more layers at the edge based on pruning techniques to enforce task-specific features for inference and reduce task-irrelevant but sensitive features for privacy preservation. To achieve privacy-oriented pruning, PATROL introduces two key components: Lipschitz regularization and adversarial reconstruction training, which increase the reconstruction errors by reducing the stability of MIAs and enhance the target inference model by adversarial training, respectively

    Fed-CPrompt: Contrastive Prompt for Rehearsal-Free Federated Continual Learning

    Full text link
    Federated continual learning (FCL) learns incremental tasks over time from confidential datasets distributed across clients. This paper focuses on rehearsal-free FCL, which has severe forgetting issues when learning new tasks due to the lack of access to historical task data. To address this issue, we propose Fed-CPrompt based on prompt learning techniques to obtain task-specific prompts in a communication-efficient way. Fed-CPrompt introduces two key components, asynchronous prompt learning, and contrastive continual loss, to handle asynchronous task arrival and heterogeneous data distributions in FCL, respectively. Extensive experiments demonstrate the effectiveness of Fed-CPrompt in achieving SOTA rehearsal-free FCL performance.Comment: Accepted by FL-ICML 202

    Distributed Pruning Towards Tiny Neural Networks in Federated Learning

    Full text link
    Neural network pruning is an essential technique for reducing the size and complexity of deep neural networks, enabling large-scale models on devices with limited resources. However, existing pruning approaches heavily rely on training data for guiding the pruning strategies, making them ineffective for federated learning over distributed and confidential datasets. Additionally, the memory- and computation-intensive pruning process becomes infeasible for recourse-constrained devices in federated learning. To address these challenges, we propose FedTiny, a distributed pruning framework for federated learning that generates specialized tiny models for memory- and computing-constrained devices. We introduce two key modules in FedTiny to adaptively search coarse- and finer-pruned specialized models to fit deployment scenarios with sparse and cheap local computation. First, an adaptive batch normalization selection module is designed to mitigate biases in pruning caused by the heterogeneity of local data. Second, a lightweight progressive pruning module aims to finer prune the models under strict memory and computational budgets, allowing the pruning policy for each layer to be gradually determined rather than evaluating the overall model structure. The experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art approaches, particularly when compressing deep models to extremely sparse tiny models. FedTiny achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91% and the memory footprint by 94.01% compared to state-of-the-art methods.Comment: This paper has been accepted to ICDCS 202

    Improving channel resilience for task-oriented semantic communications: A unified information bottleneck approach

    Get PDF
    Task-oriented semantic communications (TSC) enhance radio resource efficiency by transmitting task-relevant semantic information. However, current research often overlooks the inherent semantic distinctions among encoded features. Due to unavoidable channel variations from time and frequency-selective fading, semantically sensitive feature units could be more susceptible to erroneous inference if corrupted by dynamic channels. Therefore, this letter introduces a unified channel-resilient TSC framework via information bottleneck. This framework complements existing TSC approaches by controlling information flow to capture fine-grained feature-level semantic robustness. Experiments on a case study for real-time subchannel allocation validate the framework’s effectiveness

    Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks

    Full text link
    Optical neural networks (ONNs) herald a new era in information and communication technologies and have implemented various intelligent applications. In an ONN, the activation function (AF) is a crucial component determining the network performances and on-chip AF devices are still in development. Here, we first demonstrate on-chip reconfigurable AF devices with phase activation fulfilled by dual-functional graphene/silicon (Gra/Si) heterojunctions. With optical modulation and detection in one device, time delays are shorter, energy consumption is lower, reconfigurability is higher and the device footprint is smaller than other on-chip AF strategies. The experimental modulation voltage (power) of our Gra/Si heterojunction achieves as low as 1 V (0.5 mW), superior to many pure silicon counterparts. In the photodetection aspect, a high responsivity of over 200 mA/W is realized. Special nonlinear functions generated are fed into a complex-valued ONN to challenge handwritten letters and image recognition tasks, showing improved accuracy and potential of high-efficient, all-component-integration on-chip ONN. Our results offer new insights for on-chip ONN devices and pave the way to high-performance integrated optoelectronic computing circuits

    Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex modulates electroencephalographic functional connectivity in Alzheimer’s disease

    Get PDF
    Background: Increasing evidence demonstrates that repetitive transcranial magnetic stimulation (rTMS) treatment of the dorsolateral prefrontal cortex is beneficial for improving cognitive function in patients with Alzheimer’s disease (AD); however, the underlying mechanism of its therapeutic effect remains unclear. Objectives/Hypothesis: The aim of this study was to investigate the impact of rTMS to the dorsolateral prefrontal cortex on functional connectivity along with treatment response in AD patients with different severity of cognitive impairment. Methods: We conducted a 2-week treatment course of 10-Hz rTMS over the left dorsolateral prefrontal cortex in 23 patients with AD who were split into the mild or moderate cognitive impairment subgroup. Resting state electroencephalography and general cognition was assessed before and after rTMS. Power envelope connectivity was used to calculate functional connectivity at the source level. The functional connectivity of AD patients and 11 cognitively normal individuals was compared. Results: Power envelope connectivity was higher in the delta and theta bands but lower in the beta band in the moderate cognitive impairment group, compared to the cognitively normal controls, at baseline (p < 0.05). The mild cognitive impairment group had no significant abnormities. Montreal Cognitive Assessment scores improved after rTMS in the moderate and mild cognitive impairment groups. Power envelope connectivity in the beta band post-rTMS was increased in the moderate group (p < 0.05) but not in the mild group. No significant changes in the delta and theta band were found after rTMS in both the moderate and mild group. Conclusion: High-frequency rTMS to the dorsolateral prefrontal cortex modulates electroencephalographic functional connectivity while improving cognitive function in patients with AD. Increased beta connectivity may have an important mechanistic role in rTMS therapeutic effects.Yi Guo, Ge Dang, Brenton Hordacre, Xiaolin Su, Nan Yan, Siyan Chen, Huixia Ren, Xue Shi, Min Cai, Sirui Zhang and Xiaoyong La

    Functional connectivity changes are correlated with sleep improvement in chronic insomnia patients after rTMS treatment

    Get PDF
    BackgroundRepetitive transcranial magnetic stimulation (rTMS) has been increasingly used as a treatment modality for chronic insomnia disorder (CID). However, our understanding of the mechanisms underlying the efficacy of rTMS is limited.ObjectiveThis study aimed to investigate rTMS-induced alterations in resting-state functional connectivity and to find potential connectivity biomarkers for predicting and tracking clinical outcomes after rTMS.MethodsThirty-seven patients with CID received a 10-session low frequency rTMS treatment applied to the right dorsolateral prefrontal cortex. Before and after treatment, the patients underwent resting-state electroencephalography recordings and a sleep quality assessment using the Pittsburgh Sleep Quality Index (PSQI).ResultsAfter treatment, rTMS significantly increased the connectivity of 34 connectomes in the lower alpha frequency band (8–10 Hz). Additionally, alterations in functional connectivity between the left insula and the left inferior eye junction, as well as between the left insula and medial prefrontal cortex, were associated with a decrease in PSQI score. Further, the correlation between the functional connectivity and PSQI persisted 1 month after the completion of rTMS as evidenced by subsequent electroencephalography (EEG) recordings and the PSQI assessment.ConclusionBased on these results, we established a link between alterations in functional connectivity and clinical outcomes of rTMS, which suggested that EEG-derived functional connectivity changes were associated with clinical improvement of rTMS in treating CID. These findings provide preliminary evidence that rTMS may improve insomnia symptoms by modifying functional connectivity, which can be used to inform prospective clinical trials and potentially for treatment optimization

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore