211 research outputs found

    Deep Generative Fixed-filter Active Noise Control

    Full text link
    Due to the slow convergence and poor tracking ability, conventional LMS-based adaptive algorithms are less capable of handling dynamic noises. Selective fixed-filter active noise control (SFANC) can significantly reduce response time by selecting appropriate pre-trained control filters for different noises. Nonetheless, the limited number of pre-trained control filters may affect noise reduction performance, especially when the incoming noise differs much from the initial noises during pre-training. Therefore, a generative fixed-filter active noise control (GFANC) method is proposed in this paper to overcome the limitation. Based on deep learning and a perfect-reconstruction filter bank, the GFANC method only requires a few prior data (one pre-trained broadband control filter) to automatically generate suitable control filters for various noises. The efficacy of the GFANC method is demonstrated by numerical simulations on real-recorded noises.Comment: Accepted by ICASSP 2023. Code will be available after publicatio

    Methods for Quantized Compressed Sensing

    Get PDF
    In this paper, we compare and catalog the performance of various greedy quantized compressed sensing algorithms that reconstruct sparse signals from quantized compressed measurements. We also introduce two new greedy approaches for reconstruction: Quantized Compressed Sampling Matching Pursuit (QCoSaMP) and Adaptive Outlier Pursuit for Quantized Iterative Hard Thresholding (AOP-QIHT). We compare the performance of greedy quantized compressed sensing algorithms for a given bit-depth, sparsity, and noise level

    Differential expression of DKK-1 binding receptors on stromal cells and myeloma cells results in their distinct response to secreted DKK-1 in myeloma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The canonical Wnt signaling is concurrently important for osteoblast differentiation and myeloma cell proliferation. Its activation in myeloma cells and its inhibition in osteoblasts and their progenitors have been identified in the previous studies. Osteoblast progenitors and myeloma cells from a myeloma patient share the same bone marrow (BM) microenvironment, but respond differently to DKK-1 secreted by myeloma cells. The mechanisms remain unclear.</p> <p>Methods</p> <p>Primary multiple myeloma (MM) cells were isolated from BM mononuclear cells of 12 MM patients. Human bone marrow stromal cells (SCs) were obtained from BM adherent cells of these MM patients and 10 healthy donors. The mRNA expression levels of DKK-1 binding receptor LRP5/6 and Kremen1/2 (Krm1/2) were analyzed by Real-time PCR in human myeloma cell line (HMCL) RPMI-8226, NCI-H929, U266, LP-1, CZ-1, KM-3, Sko-007, primary myeloma cells and SCs from 12 MM patients and SCs from 10 healthy donors. The binding capability of DKK-1 binding receptors to DKK-1 on primary myeloma cells and SCs was detected by flow cytometry assay.</p> <p>Results</p> <p>The mRNA expression levels of DKK-1 binding receptor LRP5/6 and Krm1/2 in SCs from patients with MM were significantly higher than those in myeloma cells and in SCs from healthy donors. The binding capability to DKK-1of DKK-1 binding receptors on SCs from MM patients was obviously higher than those on myeloma cells and SCs from healthy donors by flow cytometry assay. Similar to the effects of coculture with rhDKK1, coculture of SCs from healthy donors with myeloma cells in the presence or absence of a Transwell insert did up-regulate SCs' mRNA levels of LRP5/6 and Krm1/2, and down-regulate their mRNA levels of β-catenin.</p> <p>Conclusion</p> <p>Compared with myeloma cells, the SCs from MM patients overexpress DKK-1 binding receptors LRP5/6 and Krm1/2 in response to DKK-1 secreted by myeloma cells, which results in intracellular Wnt signaling inhibition. Our study provides a novel insight into mechanisms of myeloma associated osteolytic lesions.</p

    Optimizing quantization for Lasso recovery

    Get PDF
    This letter is focused on quantized Compressed Sensing, assuming that Lasso is used for signal estimation. Leveraging recent work, we provide a framework to optimize the quantization function and show that the recovered signal converges to the actual signal at a quadratic rate as a function of the quantization level. We show that when the number of observations is high, this method of quantization gives a significantly better recovery rate than standard Lloyd-Max quantization. We support our theoretical analysis with numerical simulations

    Phase-Specific Augmented Reality Guidance for Microscopic Cataract Surgery Using Long-Short Spatiotemporal Aggregation Transformer

    Full text link
    Phacoemulsification cataract surgery (PCS) is a routine procedure conducted using a surgical microscope, heavily reliant on the skill of the ophthalmologist. While existing PCS guidance systems extract valuable information from surgical microscopic videos to enhance intraoperative proficiency, they suffer from non-phasespecific guidance, leading to redundant visual information. In this study, our major contribution is the development of a novel phase-specific augmented reality (AR) guidance system, which offers tailored AR information corresponding to the recognized surgical phase. Leveraging the inherent quasi-standardized nature of PCS procedures, we propose a two-stage surgical microscopic video recognition network. In the first stage, we implement a multi-task learning structure to segment the surgical limbus region and extract limbus region-focused spatial feature for each frame. In the second stage, we propose the long-short spatiotemporal aggregation transformer (LS-SAT) network to model local fine-grained and global temporal relationships, and combine the extracted spatial features to recognize the current surgical phase. Additionally, we collaborate closely with ophthalmologists to design AR visual cues by utilizing techniques such as limbus ellipse fitting and regional restricted normal cross-correlation rotation computation. We evaluated the network on publicly available and in-house datasets, with comparison results demonstrating its superior performance compared to related works. Ablation results further validated the effectiveness of the limbus region-focused spatial feature extractor and the combination of temporal features. Furthermore, the developed system was evaluated in a clinical setup, with results indicating remarkable accuracy and real-time performance. underscoring its potential for clinical applications

    Multi-influence factor prediction for water bloom based on multi-sensor system

    Get PDF
    This paper proposes a new multi-influence factors prediction method for water bloom prediction based on a remote monitor system and multi-sensor data taking into account the integrated effect of multiple influential factors along with the periodicity and random effect of environmental variables. Valid and accurate water-bloom prediction can be obtained by combining various multidimensional time series methods. Comparing the proposed model based on multi-sensors data to a traditional one-dimensional time series model based on one-sensor data, it has been found that a multidimensional model is a useful and accurate model for establishing multiple influential factors time series of water bloom. The optimum model can be used not only to predict water bloom but also to determine the period and random change rule of multiple influential factors

    Lack of association between polymorphisms of MASP2 and susceptibility to SARS coronavirus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of severe acute respiratory disease syndrome (SARS) is not fully understood. One case-control study has reported an association between susceptibility to SARS and <it>mannan-binding lectin </it>(<it>MBL</it>) in China. As the downstream protein of <it>MBL</it>, variants of the <it>MBL</it>-associated serine protease-2 (<it>MASP2</it>) gene may be associated with SARS coronavirus (SARS-CoV) infection in the same population.</p> <p>Methods</p> <p>Thirty individuals with SARS were chosen for analysis of <it>MASP2 </it>polymorphisms by means of PCR direct sequencing. Tag single nucleotide polymorphisms (tagSNPs) were chosen using pairwise tagging algorithms. The frequencies of four tag SNPs (rs12711521, rs2261695, rs2273346 and rs7548659) were ascertained in 376 SARS patients and 523 control subjects, using the Beckman SNPstream Ultra High Throughput genotyping platform.</p> <p>Results</p> <p>There is no significant association between alleles or genotypes of the <it>MASP2 </it>tagSNP and susceptibility to SARS-CoV in both Beijing and Guangzhou populations. Diplotype (rs2273346 and rs12711521)were analyzed for association with susceptibility to SARS, no statistically significant evidence of association was observed. The Beijing and Guangzhou sample groups were homogeneous regarding demographic and genetic parameters, a joined analysis also showed no statistically significant evidence of association.</p> <p>Conclusion</p> <p>Our data do not suggest a role for <it>MASP2 </it>polymorphisms in SARS susceptibility in northern and southern China.</p
    corecore