543 research outputs found
A JNK-Dependent Pathway Is Required for TNFα-Induced Apoptosis
AbstractTumor necrosis factor (TNFα) receptor signaling can simultaneously activate caspase 8, the transcription factor, NF-κB and the kinase, JNK. While activation of caspase 8 is required for TNFα-induced apoptosis, and induction of NF-κB inhibits cell death, the precise function of JNK activation in TNFα signaling is not clearly understood. Here, we report that TNFα-mediated caspase 8 cleavage and apoptosis require a sequential pathway involving JNK, Bid, and Smac/DIABLO. Activation of JNK induces caspase 8-independent cleavage of Bid at a distinct site to generate the Bid cleavage product jBid. Translocation of jBid to mitochondria leads to preferential release of Smac/DIABLO, but not cytochrome c. The released Smac/DIABLO then disrupts the TRAF2-cIAP1 complex. We propose that the JNK pathway described here is required to relieve the inhibition imposed by TRAF2-cIAP1 on caspase 8 activation and induction of apoptosis. Further, our findings define a mechanism for crosstalk between intrinsic and extrinsic cell death pathways
Simulated identification on dynamic characteristics of large heavy-load bearing
It’s difficult to test repeatedly for large heavy-load bearings (LHLBs) with full-scale and real load due to complexity and costliness, so simulated identification on dynamic characteristics of 1750 MW nuclear generator bearing with diameter 800 mm and specific pressure 3.3 MPa is provided in this paper. The identification model of bearing dynamic characteristic is established, the calculating method of positive and negative dynamic problems is provided, and effects of signal disturbances on identification precision are analyzed. The results show that the LHLBs’ permitted displacement disturbance should not be over 5 μm and the permitted ratio of dynamic load and static load is about 1 %-2 %, which is different from common knowledge of 15 %-20 % for small light-load bearings. If identification error of the main stiffness and main damping coefficients is less than 5 %, the amplitude of periodical disturbance of the dynamic load and displacement signals should be less than 5 %. If identification error of the main damping coefficients is less than 10 %, the phase of these two signals should be less than 1°. The roundness error and rotation error of the large shaft should be eliminated
Energy-efficient domain wall motion governed by the interplay of helicity-dependent optical effect and spin-orbit torque
Spin-orbit torque provides a powerful means of manipulating domain walls
along magnetic wires. However, the current density required for domain wall
motion is still too high to realize low power devices. Here we experimentally
demonstrate helicity-dependent domain wall motion by combining synchronized
femtosecond laser pulses and short current pulses in Co/Ni/Co ultra-thin film
wires with perpendicular magnetization. Domain wall can remain pinned under one
laser circular helicity while depinned by the opposite circular helicity.
Thanks to the all-optical helicity-dependent effect, the threshold current
density due to spin-orbit torque can be reduced by more than 50%. Based on this
joint effect combining spin-orbit torque and helicity-dependent laser pulses,
an optoelectronic logic-in-memory device has been experimentally demonstrated.
This work enables a new class of low power spintronic-photonic devices beyond
the conventional approach of all-optical switching or all-current switching for
data storage.Comment: 21 pages, 5 figure
Multi-Granularity Click Confidence Learning via Self-Distillation in Recommendation
Recommendation systems rely on historical clicks to learn user interests and
provide appropriate items. However, current studies tend to treat clicks
equally, which may ignore the assorted intensities of user interests in
different clicks. In this paper, we aim to achieve multi-granularity Click
confidence Learning via Self-Distillation in recommendation (CLSD). Due to the
lack of supervised signals in click confidence, we first apply self-supervised
learning to obtain click confidence scores via a global self-distillation
method. After that, we define a local confidence function to adapt confidence
scores at the user group level, since the confidence distributions can be
varied among user groups. With the combination of multi-granularity confidence
learning, we can distinguish the quality of clicks and model user interests
more accurately without involving extra data and model structures. The
significant improvements over different backbones on industrial offline and
online experiments in a real-world recommender system prove the effectiveness
of our model. Recently, CLSD has been deployed on a large-scale recommender
system, affecting over 400 million users
Domain-wall motion induced by spin transfer torque delivered by helicity-dependent femtosecond laser
In magnetic wires with perpendicular anisotropy, moving domain with only
current or only circularly polarized light requires a high power. Here, we
propose to reduce it by using both short current pulses and femtosecond laser
pulses simultaneously. The wires were made out of perpendicularly magnetized
film of Pt/Co/Ni/Co/Pt. The displacement of the domain wall is found to be
dependent on the laser helicity. Based on a quantitative analysis of the
current-induced domain wall motion, the spin orbit torque contribution can be
neglected when compared to the spin transfer torque contribution. The effective
field of the spin transfer torque is extracted from the pulsed field domain
wall measurements. Finally, our result can be described using the
Fatuzzo-Labrune model and considering the effective field due to the polarized
laser beam, the effective field due to spin transfer torque, and the Gaussian
temperature distribution of the laser spot.Comment: 14 pages, 4 figure
- …