80 research outputs found

    A Nanoscale Shape Memory Oxide

    Full text link
    Stimulus-responsive shape memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechnical devices, materials with large mechanical strain particularly at nanoscale are therefore desired. Here we report on the discovery of a large shape memory effect in BiFeO3 at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, micro-cracking etc. have to be taken into consideration for real devices, the large shape memory effect in this oxide surpasses most alloys and therefore demonstrates itself as an extraordinary material for potential use in state-of-art nano-systems.Comment: Accepted by Nature Communication

    Characterization of ultra-deeply buried middle Triassic Leikoupo marine carbonate petroleum system (!) in the Western Sichuan depression, China

    Get PDF
    Ultra-deeply buried (>5000 m) marine carbonate reservoirs have gradually become important exploration targets. This research focuses on providing an understanding of the basic elements of the ultra-deeply buried Middle Triassic Leikoupo marine carbonate petroleum system within the Western Sichuan Depression, China. Comprehensive analyses of organic geochemistry, natural gas, and C–H–He–Ne–Ar isotope compositions suggest that the reservoir is charged with compound gases from four source rock units including the Permian Longtan, Middle Triassic Leikoupo, Late Triassic Maantang and Xiaotangzi formations. Approximately a 50-m thick outcrop and 100-m length of drilling cores were examined in detail, and 108 samples were collected from six different exploration wells in order to conduct petrographic and petrophysical analyses. Thin-section and scanning electron microscope (SEM) observations, helium porosity and permeability measurements, mercury injection capillary pressure (MICP) analysis, and wire-line logging (5,500–6,900 m) indicate that the reservoir lithologies include argillaceous algal limestones, dolograinstones, crystalline dolostones, and microbially-derived stromatolitic and thrombolitic dolostones. Reservoir properties exhibit extreme heterogeneity due to different paleogeographic environmental controls and mutual interactions between constructive (e.g., epigenetic paleo-karstification, burial dissolution, structural movement, pressure-solution and dolomitization) and destructive (e.g., physical/chemical compaction, cementation, infilling, recrystallization, and replacement) diagenetic processes. An unconformity-related epigenetic karstification zone was identified in the uppermost fourth member of the Leikoupo Formation, which has developed secondary solution-enhanced pores, vugs, and holes that resulted in higher porosity (1.8–14.2%) and permeability (0.2–7.7 mD). The homogeneity and tightness of the reservoir increases with depth below the unconformity, and it is characterized by primary intergranular and intracrystalline pores, solution pores, fractures, stylolites, and micropores with a lower helium porosity (0.6–4.1%) and permeability (0.003–125.2 mD). Regional seals consist of the Late Triassic Xujiahe Formation, comprised of ~300 m of mudstones that are overlain by ~5,000-m thick of Jurassic to Quaternary continental argillaceous overburden rocks. Effective traps are dominated by a combination of structural-stratigraphic types. Paleo- reservoir crude oil cracking, wet-gases, and dry-gases from three successive hydrocarbon generation processes supplied the sufficient hydrocarbon resources. The homogenization temperatures of the hydrocarbon-associated aqueous fluid inclusions range from 98–130 °C and 130–171 °C, which suggests hydrocarbon charging occurred between 220–170 Ma and 130–90 Ma, respectively. One-dimensional basin evolution models combined with structural geologic and seismic profiles across wells PZ1-XQS1-CK1-XCS1-TS1 show that hydrocarbon migration and entrapment mainly occurred via the unconformity and interconnected fault-fracture networks with migration and charging driven by formation overpressure, abnormal fluid flow pressure, and buoyancy forces during the Indosinian and Yanshanian orogenies, with experiencing additional transformation occurring during the Himalayan orogeny. The predicted estimated reserves reached ~300 × 109 m3. The results provide excellent scientific implications for similar sedimentary basin studies, it is believed that abundant analogous deeply buried marine carbonate hydrocarbon resources yet to be discovered in China and elsewhere worldwide in the near future

    Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels

    Get PDF
    Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors—inexpensive drugs with decades of safe use—could be rapidly repurposed as cancer therapeutics.National Cancer Institute (U.S.) (Grant P01-CA080124)National Cancer Institute (U.S.) (Grant R01-CA126642)National Cancer Institute (U.S.) (Grant R01-CA085140)National Cancer Institute (U.S.) (Grant R01-CA115767)National Cancer Institute (U.S.) (Grant R01-CA098706)United States. Dept. of Defense. Breast Cancer Research Program (Innovator Award W81XWH-10-1-0016)Lustgarten Foundation (Dana-Farber Cancer Institute/David H. Koch Institute for Integrative Cancer Research at MIT Bridge Project Grant

    Computational Thermomechanical Properties of Silica–Epoxy Nanocomposites by Molecular Dynamic Simulation

    No full text
    Silica–epoxy nanocomposite models were established to investigate the influence of silane coupling agent on the structure and thermomechanical properties of the nanocomposites through molecular dynamics simulation. Results revealed that incorporating silica nanoparticles into a polymer matrix could improve thermomechanical properties of the composites and increase their glass transition temperature and thermal conductivity. Their thermomechanical properties were further enhanced through silane coupling agent modification on the surface of fillers. Compared with that of pure epoxy, the glass transition temperatures of the silica–epoxy composites with grafting ratios of 5% and 10% increased by 17 and 28 K, respectively. The thermal conductivities of the two models at room temperature respectively increased by 60.0% and 67.1%. At higher temperature 450 K, thermal conductivity of the nanocomposite model with a high grafting ratio of 10% demonstrated a considerable increase of approximately 50% over the pure epoxy resin (EP) model. The elastic and shear modulus of the nanocomposite models decreased at temperatures below their glass transition temperatures. These observations were further addressed in the interpretation from three aspects: segmental mobility capability, radial distribution function, and free volume fraction. Our computational results are largely consistent with existing experimental data, and our simulation model got fully validated

    Synthesis of Graphene-Based Sensors and Application on Detecting SF6 Decomposing Products: A Review

    No full text
    Graphene-based materials have aroused enormous focus on a wide range of engineering fields because of their unique structure. One of the most promising applications is gas adsorption and sensing. In electrical engineering, graphene-based sensors are also employed as detecting devices to estimate the operation status of gas insulated switchgear (GIS). This paper reviews the main synthesis methods of graphene, gas adsorption, and sensing mechanism of its based sensors, as well as their applications in detecting SF6 decomposing products, such as SO2, H2S, SO2F2, and SOF2, in GIS. Both theoretical and experimental researches on gas response of graphene-based sensors to these typical gases are summarized. Finally, the future research trend about graphene synthesis technique and relevant perspective are also given

    Expression-Invariant Face Recognition with Expression Classification

    No full text
    Face recognition is one of the most intensively studied topics in computer vision and pattern recognition. Facial expression, which changes face geometry, usually has an adverse effect on the performance of a face recognition system. On the other hand, face geometry is a useful cue for recognition. Taking these into account, we utilize the idea of separating geometry and texture information in a face image and model the two types of information by projecting them into separate PCA spaces which are specially designed to capture the distinctive features among different individuals. Subsequently, the texture and geometry attributes are re-combined to form a classifier which is capable of recognizing faces with different expressions. Finally, by studying face geometry, we are able to determine which type of facial expression has been carried out, thus build an expression classifier. Numerical validations of the proposed method are given

    Pt-doped single-walled CNT as a superior media for evaluating the operation status of insulation devices: A first-principle study

    No full text
    Detecting SF6 decomposed species by chemical gas sensors has been accepted as a workable method to estimate the operation status of insulation devices in electrical engineering. Functioned by transition metals, carbon nanotubes (CNTs) would be provided with enhanced sensitivity and response towards gas molecules due to the high catalytic activity of metals for gas interaction. This has been the focus of attention in recent years. In this paper, the adsorption of three SF6 decomposed components (SO2F2, SO2 and H2S) onto Pt-doped CNT were simulated based on density function theory method. Results indicated that Pt-CNT has the best sensitivity to H2S causing remarkably conductivity change accordingly, followed by SO2, and the last one comes to SO2F2. Pt dopant exerts great impacts on adsorption of gas molecules onto CNT surface through providing active adsorption sites for CNT support. Our calculation results would be meaningful to suggest advanced sensing materials being applied in the field of electrical engineering
    • …
    corecore