355 research outputs found

    Similarities and differences of functional connectivity in drug-naïve, first-episode adolescent and young adult with major depressive disorder and schizophrenia

    Get PDF
    Major depressive disorder (MDD) and schizophrenia (SZ) are considered two distinct psychiatric disorders. Yet, they have considerable overlap in symptomatology and clinical features, particularly in the initial phases of illness. The amygdala and prefrontal cortex (PFC) appear to have critical roles in these disorders; however, abnormalities appear to manifest differently. In our study forty-nine drug-naïve, first-episode MDD, 45 drug-naïve, first-episode SZ, and 50 healthy control (HC) participants from 13 to 30 years old underwent resting-state functional magnetic resonance imaging. Functional connectivity (FC) between the amygdala and PFC was compared among the three groups. Significant differences in FC were observed between the amygdala and ventral PFC (VPFC), dorsolateral PFC (DLPFC), and dorsal anterior cingulated cortex (dACC) among the three groups. Further analyses demonstrated that MDD showed decreased amygdala-VPFC FC and SZ had reductions in amygdala-dACC FC. Both the diagnostic groups had significantly decreased amygdala-DLPFC FC. These indicate abnormalities in amygdala-PFC FC and further support the importance of the interaction between the amygdala and PFC in adolescents and young adults with these disorders. Additionally, the alterations in amygdala-PFC FC may underlie the initial similarities observed between MDD and SZ and suggest potential markers of differentiation between the disorders at first onset

    GPT-Prompt Controlled Diffusion for Weakly-Supervised Semantic Segmentation

    Full text link
    Weakly supervised semantic segmentation (WSSS), aiming to train segmentation models solely using image-level labels, has received significant attention. Existing approaches mainly concentrate on creating high-quality pseudo labels by utilizing existing images and their corresponding image-level labels. However, the quality of pseudo labels degrades significantly when the size of available dataset is limited. Thus, in this paper, we tackle this problem from a different view by introducing a novel approach called GPT-Prompt Controlled Diffusion (GPCD) for data augmentation. This approach enhances the current labeled datasets by augmenting with a variety of images, achieved through controlled diffusion guided by GPT prompts. In this process, the existing images and image-level labels provide the necessary control information, where GPT is employed to enrich the prompts, leading to the generation of diverse backgrounds. Moreover, we integrate data source information as tokens into the Vision Transformer (ViT) framework. These tokens are specifically designed to improve the ability of downstream WSSS framework to recognize the origins of augmented images. Our proposed GPCD approach clearly surpasses existing state-of-the-art methods. This effect is more obvious when the amount of available data is small, demonstrating the effectiveness of our method

    Clustering Mixed Numeric and Categorical Data with Cuckoo Search

    Get PDF

    Abundant resources compensate for the uneven distribution of ungulates in desert grassland

    Get PDF
    IntroductionStrategically managing livestock grazing in arid regions optimizes land use and reduces the damage caused by overgrazing. Controlled grazing preserves the grassland ecosystem and fosters sustainability despite resource limitations. However, uneven resource distribution can lead to diverse grazing patterns and land degradation, particularly in undulating terrains.MethodsIn this study, we developed a herbivore foraging algorithm based on a resource selection function model to analyze foraging distribution patterns, predict the probability of foraging, and identify the determinants of foraging probability in cattle. The study area was a complex desert landscape encompassing dunes and interdunes. Data on cattle movements and resource distribution were collected and analyzed to model and predict foraging behavior.ResultsOur findings revealed that cattle prefer areas with abundant vegetation in proximity to water sources and avoid higher elevations. However, abundant resource availability mitigated these impacts and enhanced the role of water points, particularly during late grazing periods. The analysis showed that available resources primarily determine foraging distribution patterns and lessen the effects of landforms and water distance on patch foraging.DiscussionThe results suggest that thoughtful water source placement and the subdivision of pastures into areas with varied terrain are crucial for sustainable grazing management. By strategically managing these factors, land degradation can be minimized, and the ecological balance of grassland ecosystems can be maintained. Further research is needed to refine the model and explore its applicability in other arid regions

    Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3H-Pyrrolo[1,2-a]indol-3-ones via Rhodium Catalysis

    Get PDF
    Herein, we report the additive-controlled divergent synthesis of tetrasubstituted 1,3-enynes and alkynylated 3H-pyrrolo[1,2-a]indol-3-ones through rhodium-catalyzed C-H alkenylation/DG migration and [3+2] annulation, respectively. This protocol features rare directing group migration in 1,3-diyne-involved C-H activation, excellent regio- and stereoselectivity, excellent monofunctionalization over difunctionalization, broad substrate scope, moderate to high yields, good functional group compatibility, and mild redox-neutral conditions

    Physiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus

    Get PDF
    Norepinephrine (NE) released from the nerve terminal of locus coeruleus (LC) neurons contributes to about 70% of the total extracellular NE in primates brain. In addition, LC neurons also release NE from somatodendritic sites. Quantal NE release from soma of LC neurons has the characteristics of long latency, nerve activity-dependency, and autoinhibition by α2-adrenergic autoreceptor. The distinct kinetics of stimulus-secretion coupling in somata is regulated by action potential patterns. The physiological significance of soma and dendritic release is to produce negative-feedback and to down-regulate neuronal hyperactivity, which consequently inhibit NE release from axon terminal of LC projecting to many brain areas. Recent discoveries about the LC somatodendritic release may provide new insights into the pathogenesis of clinic disease involving LC-NE system dysfunction, and may help developing remedy targeted to the LC area

    Rhodium(III)-Catalyzed C–H Alkenylation/Directing Group Migration for the Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenes

    Get PDF
    An efficient Rh(III)-catalyzed C-H alkenylation/directing group migration cascade between indoles and alkynes for the assembly of tetrasubstituted alkenes is reported. The carbamoyl directing group migrates to the carbon of the alkene moiety of the products through rare Rh-catalyzed C-N bond cleavage after the C-H alkenylation step and thus acts as an internal amidation reagent. This protocol shows broad substrate scope, excellent regio/stereoselectivity, and good to excellent yields
    corecore