91 research outputs found

    Filter Pruning via Filters Similarity in Consecutive Layers

    Full text link
    Filter pruning is widely adopted to compress and accelerate the Convolutional Neural Networks (CNNs), but most previous works ignore the relationship between filters and channels in different layers. Processing each layer independently fails to utilize the collaborative relationship across layers. In this paper, we intuitively propose a novel pruning method by explicitly leveraging the Filters Similarity in Consecutive Layers (FSCL). FSCL compresses models by pruning filters whose corresponding features are more worthless in the model. The extensive experiments demonstrate the effectiveness of FSCL, and it yields remarkable improvement over state-of-the-art on accuracy, FLOPs and parameter reduction on several benchmark models and datasets.Comment: Accepted by ICASSP 2023 (oral

    Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies

    Get PDF
    Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen

    Study on the Deformation Measurement of the Cast-In-Place Large-Diameter Pile Using Fiber Bragg Grating Sensors

    No full text
    Compared with conventional piles such as the circle pile, the cast-in-place large-diameter pile (PCC pile) has many advantages: the lateral area of PCC pile is larger and the bearing capacity of PCC pile is higher. It is more cost-effective than other piles such as square pile under the same condition. The deformation of the PCC pile is very important for its application. In order to obtain the deformation of the PCC pile, a new type of quasi-distributed optical fiber sensing technology named a fiber Bragg grating (FBG) is used to monitor the deformation of the PCC pile. The PCC model pile is made, the packaging process of the PCC model pile and the layout of fiber sensors are designed, and the strains of the PCC model pile based on FBG sensors are monitored. The strain of the PCC pile is analyzed by the static load test. The results show that FBG technology is successfully applied for monitoring the deformation of the PCC pile, the monitoring data is more useful for the PCC pile. It will provide a reference for the engineering applications

    Tool Failure Analysis and Multi-Objective Optimization of a Cutting-Type Energy-Absorbing Structure for Subway Vehicles

    No full text
    This paper aims to provide essential guidance for the crashworthiness design of cutting energy-absorbing structures for subway vehicles. By investigating tool failure with experiment and numerical approaches, a new energy-absorbing tube structure was proposed and optimized to improve the crashworthiness and reliability of the cutting energy-absorption structure. The impact test results revealed that multiple failure modes occurred in the tool. Mechanical wear occurs mainly in the middle of the cutting edge, while the tool’s tip failure is primarily due to thermal wear. Impact forces were no longer stable due to tool failure. The simulation results of the established tool-tube thermal–structural coupling finite element model were consistent with the tests. The temperature distribution indirectly validated the failure modes in different tool areas. By eliminating the tearing-type fracture mode, the proposed new structure effectively reduced the high temperature of the tool’s tip, better maintained the uniform temperature of the cutting edge, and smoothed changing of the cutting force. Finally, the Kriging surrogate model and NSGA-II algorithm were utilized to obtain the tool’s minimum steady-state temperature (STT) and maximum mean average cutting force (MCF). The optimal solution determined by the minimum distance method is STT = 514 K, MCF = 131 kN

    Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China

    No full text
    An in-depth exploration of the dynamics and existing problems in farmland morphology is crucial to formulate targeted protection policies. In this study, we constructed a morphological evaluation index system to identify the characteristics of farmland use transition in Sihong County of the Huang-Huai-Hai Plain, China. The dominant morphology in terms of area and landscape pattern and the recessive morphology focusing on function were considered in this work. Based on this information, the driving factors of farmland use transition were quantitatively analyzed via the mixed regression model. The following major findings were determined: (1) The area showed a U-shaped change trend during 2009–2018. The patch density (PD) showed an upward trend, and the mean patch size (MPS) showed a downward trend, indicating that the degree of farmland fragmentation increased. The implementation of land consolidation projects increased the area and aggregation of farmland, while urbanization and road construction occupied and divided the farmland, leading to a reduction in area and increase in the degree of fragmentation. (2) The crop production, living security, and eco-environmental function of farmland showed a trend of first decreasing and then increasing. Urbanization increased the demand for agricultural products and the degree of large-scale agricultural production and had a positive impact on the crop production and eco-environmental function of farmland. Our research highlights that increasing farmland fragmentation should be addressed in the farming area. Therefore, the government should formulate efficient policies to curb farmland occupation for urban and traffic utilization

    Learning to Sense: Deep Learning for Wireless Sensing with Less Training Efforts

    No full text
    corecore