32 research outputs found
Insulating and Conducting Phases of RbC60
Optical measurements were performed on thin films of RbC,
identified by X-ray diffraction as mostly material. The samples were
subjected to various heat treatments, including quenching and slow cooling from
400K. The dramatic increase in the transmission of the quenched samples, and
the relaxation towards the transmission observed in slow cooled samples
provides direct evidence for the existence of a metastable insulating phase.
Slow cooling results in a phase transition between two electrically conducting
phases.Comment: Minor revisions. Submitted to PRB, RevTeX 3.0 file, 2 postscript
figures included, ir_dop
Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals
We report the measurement of infrared transmission of large C60 single
crystals. The spectra exhibit a very rich structure with over 180 vibrational
absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are
observed to have become weakly IR-active. We also observe a large number of
higher order combination modes. The temperature (77K - 300K) and pressure (0 -
25KBar) dependencies of these modes were measured and are presented. Careful
analysis of the IR spectra in conjunction with Raman scattering data showing
second order modes and neutron scattering data, allow the selection of the 46
vibrational modes C60. We are able to fit *all* of the first and second order
data seen in the present IR spectra and the previously published Raman data
(~300 lines total), using these 46 modes and their group theory allowed second
order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon
Local Model Checking and Protocol Analysis
. This paper describes a local model-checking algorithm for the alternation-free fragment of the modal mucalculus that has been implemented in the Concurrency Factory and discusses its application to the analysis of a realtime communications protocol. The protocol considered is RETHER, a software-based, real-time Ethernet protocol developed at SUNY at Stony Brook. Its purpose is to provide guaranteed bandwidth and deterministic, periodic network access to multimedia applications over commodity Ethernet hardware. Our model-checking results show that (for a particular network configuration) RETHER makes good on its bandwidth guarantees to real-time nodes without exposing nonreal -time nodes to the possibility of starvation. Our data also indicate that, in many cases, the state-exploration overhead of the local model checker is significantly smaller than the total amount that would result from a global analysis of the protocol. In the course of specifying and verifying RETHER, we also i..
Real-Time Verification Techniques for Untimed Systems
We show that verification techniques for timed automata based on the Alur and Dill region-graph construction can be applied to much more general kinds of systems, including asynchronous untimed systems over unbounded integer variables. We follow this approach in proving that the model-checking problem for the n-process Bakery algorithm is decidable, for any fixed n. We believe this is the first decidability proof for this problem to appear in the literature
Tabled Resolution + Constraints: A Recipe for Model Checking Real-Time Systems
We present a computational framework based on tabled resolution and constraints for model checking real-time systems. The model checker we have implemented, XMC/RT, offers: flexibility in the form of forward and back reachability analysis and timed modal mu-calculus model checking; extensibility in that it can easily be extended to parametric, hybrid, and infinite-state systems; simplicity as witnessed by the highly declarative manner (approx. 350 lines of Prolog code) in which XMC/RT is written; and efficiency through the use of a goal-directed and tabled resolution strategy and various logic-programming optimizations. A detailed proof of XMC/RT's correctness along with experimental results benchmarking XMC/RT's performance are provided
Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct
To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA) was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT), which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT) and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites