187 research outputs found

    Whole blueberry protects pancreatic beta-cells in diet-induced obese mouse

    Get PDF
    Background Blueberry is rich in bioactive substances and possesses powerful antioxidant potential, which can protect against oxidant-induced and inflammatory cell damage and cytotoxicity. The aim of this study was to determine how blueberry affects glucose metabolism and pancreatic β-cell proliferation in high fat diet (HFD)-induced obese mice. Methods Wild type male mice at age of 4 weeks received two different kinds of diets: high-fat diet (HFD) containing 60% fat or modified HFD supplemented with 4% (wt:wt) freeze-dried whole blueberry powder (HFD + B) for 14 weeks. A separate experiment was performed in mice fed with low-fat diet (LFD) containing 10% fat or modified LFD + B supplemented with 4% (wt:wt) freeze-dried whole blueberry powder. The metabolic parameters including blood glucose and insulin levels, glucose and insulin tolerances were measured. Results Blueberry-supplemented diet significantly increased insulin sensitivity and glucose tolerance in HFD + B mice compared to HFD mice. However, no difference was observed in blood glucose and insulin sensitivity between LFD + B and LFD mice. In addition, blueberry increased β-cell survival and prevented HFD-induced β-cell expansion. The most important finding was the observation of presence of small scattered islets in blueberry treated obese mice, which may reflect a potential role of blueberry in regenerating pancreatic β-cells. Conclusions Blueberry-supplemented diet can prevent obesity-induced insulin resistance by improving insulin sensitivity and protecting pancreatic β-cells. Blueberry supplementation has the potential to protect and improve health conditions for both type 1 and type 2 diabetes patients

    Microwave-Assisted Oxidation of Electrospun Turbostratic Carbon Nanofibers for Tailoring Energy Storage Capabilities

    Get PDF
    We report the systematic structural manipulation of turbostratic electrospun carbon nanofibers (ECNFs) using a microwave-assisted oxidation process, which is extremely rapid and highly controllable and affords controlled variation of the capacitive energy storage capabilities of ECNFs. We find a nonmonotonic relationship between the oxidation degree of ECNFs and their electrocapacitive performance and present a detailed study on the electronic and crystalline structures of ECNFs to elucidate the origin of this nonmonotonic relation. The ECNFs with an optimized oxidation level show ultrahigh capacitances at high operation rates, exceptional cycling performance, and an excellent energy–power combination. We have identified three key factors required for optimal energy storage performance for turbostratic carbon systems: (i) an abundance of surface oxides, (ii) microstructural integrity, and (iii) an appropriate interlayer spacing

    Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in nuScenes

    Full text link
    Modern autonomous driving systems are typically divided into three main tasks: perception, prediction, and planning. The planning task involves predicting the trajectory of the ego vehicle based on inputs from both internal intention and the external environment, and manipulating the vehicle accordingly. Most existing works evaluate their performance on the nuScenes dataset using the L2 error and collision rate between the predicted trajectories and the ground truth. In this paper, we reevaluate these existing evaluation metrics and explore whether they accurately measure the superiority of different methods. Specifically, we design an MLP-based method that takes raw sensor data (e.g., past trajectory, velocity, etc.) as input and directly outputs the future trajectory of the ego vehicle, without using any perception or prediction information such as camera images or LiDAR. Our simple method achieves similar end-to-end planning performance on the nuScenes dataset with other perception-based methods, reducing the average L2 error by about 20%. Meanwhile, the perception-based methods have an advantage in terms of collision rate. We further conduct in-depth analysis and provide new insights into the factors that are critical for the success of the planning task on nuScenes dataset. Our observation also indicates that we need to rethink the current open-loop evaluation scheme of end-to-end autonomous driving in nuScenes. Codes are available at https://github.com/E2E-AD/AD-MLP.Comment: Technical report. Code is availabl

    Towards Semantic e-Science for Traditional Chinese Medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science.</p> <p>Results</p> <p>We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research.</p> <p>Conclusion</p> <p>Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline.</p

    The mechanism of palmatine-mediated intestinal flora and host metabolism intervention in OA-OP comorbidity rats

    Get PDF
    BackgroundErXian decoction is a Chinese herbal compound that can prevent and control the course of osteoarthritis (OA) and osteoporosis (OP). OP and OA are two age-related diseases that often coexist in elderly individuals, and both are associated with dysregulation of the gut microbiome. In the initial study, Palmatine (PAL) was obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and network pharmacological screening techniques, followed by 16S rRNA sequencing and serum metabolomics of intestinal contents, to explore the mechanism of PAL in the treatment of OA and OP.MethodsThe rats selected for this study were randomly divided into three groups: a sham group, an OA-OP group and a PAL group. The sham group was intragastrically administered normal saline solution, and the PLA group was treated with PAL for 56 days. Through microcomputed tomography (micro-CT), ELISA, 16S rRNA gene sequencing and non-targeted metabonomics research, we explored the potential mechanism of intestinal microbiota and serum metabolites in PAL treatment of OA-OP rats.ResultsPalmatine significantly repair bone microarchitecture of rat femur in OA-OP rats and improved cartilage damage. The analysis of intestinal microflora showed that PAL could also improve the intestinal microflora disorder of OA-OP rats. For example, the abundance of Firmicutes, Bacteroidota, Actinobacteria, Lactobacillus, unclassified_f_Lachnospiraceae, norank_f_Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Muribaculaceae increased after PAL intervention. In addition, the results of metabolomics data analysis showed that PAL also change the metabolic status of OA-OP rats. After PAL intervention, metabolites such as 5-methoxytryptophol, 2-methoxy acetaminophen sulfate, beta-tyrosine, indole-3-carboxylic acid-O-sulfate and cyclodopa glucoside increased. Association analysis of metabolomics and gut microbiota (GM) showed that the communication of multiple flora and different metabolites played an important role in OP and OA.ConclusionPalmatine can improve cartilage degeneration and bone loss in OA-OP rats. The evidence we provided supports the idea that PAL improves OA-OP by altering GM and serum metabolites. In addition, the application of GM and serum metabolomics correlation analysis provides a new strategy for uncovering the mechanism of herbal treatment for bone diseases

    Genome Editing of Pik3cd Impedes Abnormal Retinal Angiogenesis

    Get PDF
    Abnormal angiogenesis is associated with myriad human diseases including proliferative diabetic retinopathy. Signaling transduction via phosphoinositide 3-kinases (PI3Ks) plays a critical role in angiogenesis. Herein, we showed that p110δ, the catalytic subunit of PI3Kδ, was highly expressed in pathological retinal vascular endothelial cells (ECs) in a mouse model of oxygen-induced retinopathy (OIR) and in fibrovascular membranes from patients with proliferative diabetic retinopathy. To explore novel intervention with PI3Kδ expression, we developed a recombinant dual adeno-associated viral (rAAV) system for delivering CRISPR/Cas9 in which Streptococcus pyogenes (Sp) Cas9 expression was driven by an endothelial specific promoter of intercellular adhesion molecule 2 (pICAM2) to edit genomic Pik3cd, the gene encoding p110δ. We then demonstrated that infection of cultured mouse vascular endothelial cells with the dual rAAV1s of rAAV1-pICAM2-SpCas9 and rAAV1-SpGuide targeting genomic Pik3cd resulted in 80% DNA insertion/deletion in the locus of genomic Pik3cd and 70% depletion of p110δ expression. Furthermore, we showed that in the mouse model of OIR editing retinal Pik3cd with the dual rAAV1s resulted in not only a significant decrease in p110δ expression, and Akt activation, but also a dramatic reduction in pathological retinal angiogenesis. These findings reveal that Pik3cd editing is a novel approach to treating abnormal retinal angiogenesis

    Correction to: Genome Editing of Pik3cd Impedes Abnormal Retinal Angiogenesis, by Wu et al. Hum Gene Ther 2023;34(1-2):30-41; doi: 10.1089/hum.2022.079

    Get PDF
    In the January 2023 issue of Human Gene Therapy (vol. 34, no. 1-2; 30–41), the article titled Genome Editing of Pik3cd Impedes Abnormal Retinal Angiogenesis, by Wu et al. requires correction. The author byline originally appeared with the 13th author's name incorrectly published as GuomingZhao Wenyi Wu,1,2,3 Gaoen Ma,4 Hui Qi,5 Lijun Dong,5 Fang Chen,6 Yun Wang,5 Xingxing Mao,5 Xiaoqing Guo,2,3 Jing Cui,7 Joanne Aiko Matsubara,7 Bart Vanhaesebroeck,8 Xiaohe Yan,5Guoming Zhao,5 Shaochong Zhang,5,* and Hetian Lei 5,* The correct spelling of the author's name is GuomingZhang The online version of the article has been corrected to reflect this. The authors apologize for the error
    • …
    corecore