266 research outputs found

    Infinite families of cyclic and negacyclic codes supporting 3-designs

    Full text link
    Interplay between coding theory and combinatorial tt-designs has been a hot topic for many years for combinatorialists and coding theorists. Some infinite families of cyclic codes supporting infinite families of 33-designs have been constructed in the past 50 years. However, no infinite family of negacyclic codes supporting an infinite family of 33-designs has been reported in the literature. This is the main motivation of this paper. Let q=pmq=p^m, where pp is an odd prime and m≥2m \geq 2 is an integer. The objective of this paper is to present an infinite family of cyclic codes over \gf(q) supporting an infinite family of 33-designs and two infinite families of negacyclic codes over \gf(q^2) supporting two infinite families of 33-designs. The parameters and the weight distributions of these codes are determined. The subfield subcodes of these negacyclic codes over \gf(q) are studied. Three infinite families of almost MDS codes are also presented. A constacyclic code over GF(44) supporting a 44-design and six open problems are also presented in this paper

    Active power decoupling for current source converters:An overview scenario

    Get PDF
    For single-phase current source converters, there is an inherent limitation in DC-side low-frequency power oscillation, which is twice the grid fundamental frequency. In practice, it transfers to the DC side and results in the low-frequency DC-link ripple. One possible solution is to install excessively large DC-link inductance for attenuating the ripple. However, it is of bulky size and not cost-effective. Another method is to use the passive LC branch for bypassing the power decoupling, but this is still not cost-effective due to the low-frequency LC circuit. Recently, active power decoupling techniques for the current source converters have been sparsely reported in literature. However, there has been no attempt to classify and understand them in a systematic way so far. In order to fill this gap, an overview of the active power decoupling for single-phase current source converters is presented in this paper. Systematic classification and comparison are provided for researchers and engineers to select the appropriate solutions for their specific applications

    Soluble interleukin-2 receptor combined with interleukin-8 is a powerful predictor of future adverse cardiovascular events in patients with acute myocardial infarction

    Get PDF
    BackgroundLittle is known about the role of interleukin (IL) in patients with acute myocardial infarction (MI), especially soluble IL-2 receptor (sIL-2R) and IL-8. We aim to evaluate, in MI patients, the predictive value of serum sIL-2R and IL-8 for future major adverse cardiovascular events (MACEs), and compare them with current biomarkers reflecting myocardial inflammation and injury.MethodsThis was a prospective, single-center cohort study. We measured serum concentrations of IL-1β, sIL-2R, IL-6, IL-8 and IL-10. Levels of current biomarkers for predicting MACEs were measured, including high-sensitivity C reactive protein, cardiac troponin T and N-terminal pro-brain natriuretic peptide. Clinical events were collected during 1-year and a median of 2.2 years (long-term) follow-up.ResultsTwenty-four patients (13.8%, 24/173) experienced MACEs during 1-year follow-up and 40 patients (23.1%, 40/173) during long-term follow-up. Of the five interleukins studied, only sIL-2R and IL-8 were independently associated with endpoints during 1-year or long-term follow-up. Patients with high sIL-2R or IL-8 levels (higher than the cutoff value) had a significantly higher risk of MACEs during 1-year (sIL-2R: HR 7.7, 3.3–18.0, p < 0.001; IL-8: HR 4.8, 2.1–10.7, p < 0.001) and long-term (sIL-2R: HR 7.7, 3.3–18.0, p < 0.001; IL-8: HR 4.8, 2.1–10.7, p < 0.001) follow-up. Receiver operator characteristic curve analysis regarding predictive accuracy for MACEs during 1-year follow-up showed that the area under the curve for sIL-2R, IL-8, sIL-2R combined with IL-8 was 0.66 (0.54–0.79, p = 0.011), 0.69 (0.56–0.82, p < 0.001) and 0.720 (0.59–0.85, p < 0.001), whose predictive value were superior to that of current biomarkers. The addition of sIL-2R combined with IL-8 to the existing prediction model resulted in a significant improvement in predictive power (p = 0.029), prompting a 20.8% increase in the proportion of correct classifications.ConclusionsHigh serum sIL-2R combined with IL-8 levels was significantly associated with MACEs during follow-up in patients with MI, suggesting that sIL-2R combined with IL-8 may be a helpful biomarker for identifying the increased risk of new cardiovascular events. IL-2 and IL-8 would be promising therapeutic targets for anti-inflammatory therapy

    Total Flavonoids from Leaves of Carya Cathayensis Ameliorate Renal Fibrosis via the miR-21/Smad7 Signaling Pathway

    Get PDF
    Background/Aims: Renal tubulointerstitial fibrosis is the most common pathway of progressive kidney injury, leading to end-stage renal disease. At present, no effective prophylactic treatment method is available. This study investigated the anti-fibrotic effects of total flavonoids (TFs) extracted from leaves of Carya Cathayensis in vivo and in vitro, and explored the underlying mechanisms. Methods: Anti-fibrotic effects of TFs were measured using a mouse model of unilateral ureteral obstruction (UUO) and in transforming growth factor-β1 (TGF-β1)-treated mouse tubular epithelial cells (mTECs). mRNA expression and protein levels of Collagen I, Collagen III, and α-smooth muscle actin (α-SMA) were also tested by real-time reverse transcription PCR and western blot analysis. To elucidate the underlying mechanisms, expression of miR-21 was examined in mTECs treated with TFs using miR-21 mimics transfected into mTECs before TGF-β1 and TFs treatment. Regulation of mothers against decapentaplegic homolog (Smad) signaling by miR-21 was subsequently validated via overexpression and deletion of miR-21 followed by a luciferase assay. Results: TFs treatment attenuated renal fibrosis, and inhibited expression of collagens and α-SMA in the kidneys of mice subjected to UUO. In vitro, the TFs significantly decreased expression of fibrotic markers in TGF-β1-treated mTECs. Moreover, TFs reduced miR-21 expression in a time- and dose-dependent manner in mTECs, increased expression of Smad7, and decreased phosphorylation of Smad3. Treatment with miR-21 mimics abolished the anti-fibrotic effects of the TFs on the TGF-β1-treated mTECs. In addition, genetic deletion of miR-21 upregulated expression of Smad7 and suppressed phosphorylation of Smad3, attenuating renal fibrosis in mice. Bioinformatics predictions revealed the potential binding site of miR-21 in the 3′-untranslated region of Smad7, and this was further confirmed by the luciferase assay. Conclusion: TFs ameliorate renal fibrosis via a miR-21/Smad7 signaling pathway, indicating a potential therapy for the prevention of renal fibrosis

    Vancomycin associated acute kidney injury in patients with infectious endocarditis: a large retrospective cohort study

    Get PDF
    Background: Vancomycin remains the cornerstone antibiotic for the treatment of infective endocarditis (IE). Vancomycin has been associated with significant nephrotoxicity. However, vancomycin associated acute kidney injury (AKI) has not been evaluated in patients with IE. We conducted this large retrospective cohort study to reveal the incidence, risk factors, and prognosis of vancomycin-associated acute kidney injury (VA-AKI) in patients with IE.Methods: Adult patients diagnosed with IE and receiving vancomycin were included. The primary outcome was VA-AKI.Results: In total, 435 of the 600 patients were enrolled. Of these, 73.6% were male, and the median age was 52 years. The incidence of VA-AKI was 17.01% (74). Only 37.2% (162) of the patients received therapeutic monitoring of vancomycin, and 30 (18.5%) patients had reached the target vancomycin trough concentration. Multiple logistic regression analysis revealed that body mass index [odds ratio (OR) 1.088, 95% CI 1.004, 1.179], duration of vancomycin therapy (OR 1.030, 95% CI 1.003, 1.058), preexisting chronic kidney disease (OR 2.291, 95% CI 1.018, 5.516), admission to the intensive care unit (OR 2.291, 95% CI 1.289, 3.963) and concomitant radiocontrast agents (OR 2.085, 95% CI 1.093, 3.978) were independent risk factors for VA-AKI. Vancomycin variety (Lai Kexin vs. Wen Kexin, OR 0.498, 95% CI 0.281, 0.885) were determined to be an independent protective factor for VI-AKI. Receiver operator characteristic curve analysis revealed that duration of therapy longer than 10.75 days was associated with a significantly increased risk of VA-AKI (HR 1.927). Kidney function was fully or partially recovered in 73.0% (54) of patients with VA-AKI.Conclusion: The incidence of VA-AKI in patients with IE was slightly higher than in general adult patients. Concomitant contrast agents were the most alarmingly nephrotoxic in patients with IE, adding a 2-fold risk of VA-AKI. In patients with IE, a course of vancomycin therapy longer than 10.75 days was associated with a significantly increased risk of AKI. Thus, closer monitoring of kidney function and vancomycin trough concentrations was recommended in patients with concurrent contrast or courses of vancomycin longer than 10.75 days

    PGNet: Real-time Arbitrarily-Shaped Text Spotting with Point Gathering Network

    Full text link
    The reading of arbitrarily-shaped text has received increasing research attention. However, existing text spotters are mostly built on two-stage frameworks or character-based methods, which suffer from either Non-Maximum Suppression (NMS), Region-of-Interest (RoI) operations, or character-level annotations. In this paper, to address the above problems, we propose a novel fully convolutional Point Gathering Network (PGNet) for reading arbitrarily-shaped text in real-time. The PGNet is a single-shot text spotter, where the pixel-level character classification map is learned with proposed PG-CTC loss avoiding the usage of character-level annotations. With a PG-CTC decoder, we gather high-level character classification vectors from two-dimensional space and decode them into text symbols without NMS and RoI operations involved, which guarantees high efficiency. Additionally, reasoning the relations between each character and its neighbors, a graph refinement module (GRM) is proposed to optimize the coarse recognition and improve the end-to-end performance. Experiments prove that the proposed method achieves competitive accuracy, meanwhile significantly improving the running speed. In particular, in Total-Text, it runs at 46.7 FPS, surpassing the previous spotters with a large margin.Comment: 10 pages, 8 figures, AAAI 202

    Erythrocyte transfusion limits the role of elevated red cell distribution width on predicting cardiac surgery associated acute kidney injury

    Get PDF
    Background: Acute kidney injury (AKI) is one of the more serious complications after cardiac surgery. Elevated red cell distribution width (RDW) was reported as a predictor for cardiac surgery associated acute kidney injury (CSAKI). However, the increment of RDW by erythrocyte transfusion makes its prognostic role doubtful. The aim of this study is to elucidate the impact of erythrocyte transfusion on the prognostic role of elevated RDW for predicting CSAKI.Methods: A total of 3207 eligible patients who underwent cardiac surgery during 2016–2017 were enrolled. Changes of RDW was defined as the difference between preoperative RDW and RDW measured 24 h after cardiac surgery. The primary outcome was CSAKI which was defined by the Kidney Disease: Improving Global Outcomes Definition and Staging (KDIGO) criteria. Univariate and multivariate analysis were performed to identify predictors for CSAKI.Results: The incidence of CSAKI was 38.07% and the mortality was 1.18%. CSAKI patients had higher elevated RDW than those without CSAKI (0.65% vs. 0.39%, p < 0.001). Multivariate regression showed that male, age, New York Heat Association classification 3–4, elevated RDW, estimated glomerular filtration rate < 60 mL/min/1.73 m2, cardiopulmonary bypass time > 120 min and erythrocyte transfusion were associated with CSAKI. Subgroup analysis showed elevated RDW was an independent predictor for CSAKI in the non-transfused subset (adjusted odds ratio: 1.616, p < 0.001) whereas no significant association between elevated RDW and CSAKI was found in the transfused patients (odds ratio: 1.040, p = 0.497).Conclusions: Elevated RDW is one of the independent predictors of CSAKI in the absence of erythrocyte transfusion, which limits the prognostic role of the former on predicting CSAKI

    miR-382 Contributes to Renal Tubulointerstitial Fibrosis by Downregulating HSPD1

    Get PDF
    Redox imbalance plays an important role in the pathogenesis of CKD progression. Previously, we demonstrated that microRNA-382 (miR-382) contributed to TGF-β1-induced loss of epithelial polarity in human kidney epithelial cells, but its role in the development of renal tubulointerstitial fibrosis remains unknown. In this study, we found that with 7 days of unilateral ureteral obstruction (UUO) in mice, the abundance of miR-382 in the obstructed kidney was significantly increased. Meanwhile, the protein expression of heat shock protein 60 (HSPD1), a predicted target of miR-382, was reduced after 7 days of UUO. Expression of 3-nitrotyrosine (3-NT) was upregulated, but expression of thioredoxin (Trx) was downregulated. Anti-miR-382 treatment suppressed the upregulation of miR-382, attenuated renal interstitial fibrosis in the obstructed kidney, and reversed the downregulation of HSPD1/Trx and upregulation of 3-NT after UUO. Furthermore, in vitro study revealed that overexpression of HSPD1 significantly restored Trx expression and reversed TGF-β1-induced loss of E-cadherin, while in vivo study found that direct siRNA-mediated suppression of HSPD1 in the UUO kidney promoted oxidative stress despite miR-382 blockade. Our clinical data showed that upregulation of miR-382/3-NT and downregulation of HSPD1/Trx were also observed in IgA nephropathy patients with renal interstitial fibrosis. These data supported a novel mechanism in which miR-382 targets HSPD1 and contributes to the redox imbalance in the development of renal fibrosis

    miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation

    Get PDF
    Renal tubular injury and innate immune responses induced by hypoxia contribute to acute kidney injury. Accumulating evidence suggests that miR-21 overexpression protects against kidney ischemia injury. Additionally, miR-21 emerges as a key inhibitor in dendritic cell maturation. Thus, we hypothesized that miR-21 protects the kidney from IR injury by suppressing epithelial cell damage and inflammatory reaction. In this study, we investigated effects of miR-21 and its signaling pathways (PTEN/AKT/mTOR/HIF, PDCD4/NFκ-B) on kidney ischemia/reperfusion (IR) injury in vitro and in vivo. The results revealed that IR increased miR-21, HIF1α, and 2α expression in vivo and in vitro. MiR-21 interacted with HIF1α and 2α through the PTEN/AKT/mTOR pathway. Moreover, inhibition of miR-21 activated PDCD4/NFκ-B pathways, which are critical for dendritic cell maturation. Renal IR triggers local inflammation by inducing the dendritic cell maturation and promoting the secretion of IL-12, IL-6, and TNF-α cytokines. Knockdown of miR-21 intensified the effect of IR on tubular epithelial cell apoptosis and dendritic cell maturation. Our results suggested that IR-inducible miR-21 protects epithelial cells from IR injury via a feedback interaction with HIF (PTEN/AKT/mTOR/HIF/miR-21) and by inhibiting maturation of DCs through the PDCD4/NF-κB pathway. These findings highlight new therapeutic opportunities in AKI

    Cyclic Nucleotide-Gated Channels Contribute to Thromboxane A2-Induced Contraction of Rat Small Mesenteric Arteries

    Get PDF
    Background: Thromboxane A 2 (TxA 2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca 2+ influx, which resulted in vascular contraction via Ca 2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca 2+ influx in vascular smooth muscle cells. Methodology/Principal Findings: Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca 2+, because removal of extracellular Ca 2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca 2+ channel inhibitor nifedipine (0.5–1 mM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca 2+ ([Ca 2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells. Conclusions/Significance: These data suggest a functional role of CNG channels in U-46619-induced Ca 2+ influx and contraction of smooth muscle cells
    • …
    corecore