36,216 research outputs found

    Conformal Oscillator Representations of Orthogonal Lie Algebras

    Full text link
    The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n+2). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector a, we prove that the space forms an irreducible o(n+2)-module for any constant c if the vector a is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2) on the polynomial algebra C in n variables. Moreover, we prove that the algebra C forms an infinite-dimensional irreducible weight o(n+2)-module with finite-dimensional weight subspaces if the constant c is not a half integer.Comment: 13page
    corecore