100 research outputs found

    Smart membranes for oil/water emulsions separation: a review

    Get PDF
    Oily wastewater poses a significant impact on both environments and human societies. Especially, the treatment of oil/water emulsions for separating oil from water is challenging due to the high stability of oil/water emulsions. Smart membranes, known as stimuli-responsive membranes, are one of the emerging technologies that have been paid wide attention for separating oil/water emulsions in recent years. Smart membranes possess the unique features of switchable wettability between hydrophilicity and hydrophobicity after being triggered by external stimuli and have desired anti-fouling properties. This review summarizes the development of smart membranes for oil/water emulsions separation during the past five years (2018 – present). It was found that solvent stimuli-responsive membranes are the most popular type of smart membranes for oil/water emulsions separation. For multi-stimuli-responsive membranes that can respond to more than one stimulus, future research should focus on developing appropriate fabrication strategies to increase the separation and anti-fouling performances of the membranes. Additionally, surface coating, surface grafting, and copolymer blending are the most popular methods for smart membranes fabrication. However, these methods might not be universally applicable to the different types of stimuli-responsive membranes

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2
    • …
    corecore