29 research outputs found

    An open-ocean forcing in the East China and Yellow seas

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C12056, doi:10.1029/2010JC006179.Recent studies have demonstrated that the annual mean barotropic currents over the East China and Yellow seas (ECYS) are forced primarily by the oceanic circulation in the open-ocean basin through the Kuroshio Current (KC), the western boundary current of the subtropical gyre in the North Pacific Ocean. The local wind stress forcing plays an important but secondary role. Those previous results were mainly qualitative and from a simple barotropic model forced by a steady wind stress field. They remain to be tested in a more complete 3-D model with both wind stress and buoyancy fluxes. In addition, the seasonal variability of major ECYS currents may involve different forcing mechanisms than their annually averaged fields do, and this can only be addressed when a seasonally varying forcing is used in the model. In this paper, we will address these issues by using a 3-D baroclinic model. Our results confirm the finding from the previous studies that the KC is the primary forcing mechanism for major annually mean currents in the ECYS, which include the Taiwan Strait Current, the Tsushima Warm Current, and the Yellow Sea Warm Current (YSWC), etc. However, the local monsoonal forcing plays a prominent role in modulating the seasonal variability of all major currents in the region. A deep northwestward intrusion of the YSWC in winter, for instance, is mainly due to a robustly developed China Coastal Current and Korea Coastal Current, which draw water along the Yellow Sea Trough to feed the southward flows along the west and east coasts of the Yellow Sea.This work was supported by the National Basic Research Program of China (2005CB422302), the International Science and Technology Cooperation Program of China (2006DFB21250), the Program of Introducing Talents of Discipline to Universities (B07036), the National Natural Science Foundation of China (41006003), and the U.S. National Science Foundation

    PGC-1 α

    Get PDF
    Aim. To investigate the effect of Tongxinluo (Txl), a Chinese herbal compound, on diabetic peripheral neuropathy (DPN). Methods and Results. Diabetic rat model was established by peritoneal injection of streptozotocin (STZ). Txl ultrafine powder treatment for 16 weeks from the baseline significantly reversed the impairment of motor nerve conductive velocity (MNCV), mechanical hyperalgesia, and nerve structure. We further proved that Tongxinluo upregulates PGC-1α and its downstream factors including COX IV and SOD, which were involved in mitochondrial biogenesis. Conclusion. Our study indicates that the protective effect of Txl in diabetic neuropathy may be attributed to the induction of PGC-1α and its downstream targets. This finding may further illustrate the pleiotropic effect of the medicine

    Improving Effect of Ligustilide on Dextran Sodium Sulfate-induced Ulcerative Colitis

    Get PDF
    Objective: To research the therapeutic effects and mechanisms of ligustilide (Lig) in improving dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice. Methods: Intervention of lig was delivered in sixty male SPF C57 BL/6 mice and the mice were differentiated in six groups according to the dose of lig as: Control group, DSS group, positive control group (treated with sulfasalazine, SASP), low-dose lig group, medium-dose lig group, and high-dose lig group. The UC in DSS mice was induced by a 3% DSS solution through oral administration for 7 days, in the meanwhile, the low, medium, and high-dose lig groups were received gavage feeding of lig and oral administration of 3% DSS solution. Before and after the intervention, the body weight, colon length, and the disease activity index (DAI) score were collected for assessment of UC. Furthermore, the expression levels of TLR4/NF-κB proteins in colon and serum TNF-α, IL-6, and IL-1β were quantitatively measured using enzyme-linked immunosorbent (ELISA) assays. Additionally, histological examination was performed to investigate the effects and mechanisms of lig in improving UC in mice by hematoxylin-eosin staining. Results: Compared to the control group, significantly reduced body weight (P<0.05), shorter colon length (P<0.05), increased DAI score (P<0.05). And there was a large amount of inflammatory infiltration in the intestine, the expression level of TNF-α, IL-6, and IL-1β in the colon significantly increased (P<0.05). Compared with DSS group, significant suppression of the TLR4/NF-κB signaling pathway in the intestinal tissue, serum TNF-α, IL-6, and IL-1β expression (P<0.05) were observed in the medium and high-dose lig groups, which indicated a significant improvement in intestinal damage. Conclusion: Lig would be able to effectively improve DSS-induced UC in mice. Moreover, the results showed that the mechanism of lig improving DSS-induced UC was possibly involved with the inhibition of the NF-κB signaling pathway

    Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum

    Get PDF
    AbstractThe data presented in this paper is supporting the research article “Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum” [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), “Bayesian phylogenetic inference under mixed models” [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, “SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.” [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, “Pfam: the protein families database” [4]

    On the mechanism of the cyclonic circulation in the Gulf of Tonkin in the summer

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C09029, doi:10.1029/2007JC004208.The circulation in the Gulf of Tonkin had been traditionally considered to be anticyclonic in the summer. This view was challenged recently by results from reanalyzing observational data, which clearly revealed that the circulation is cyclonic in all seasons. The surface wind stress is monsoonal, southwesterly in the summer and reversed in the winter. It remains unexplained why the circulation is always cyclonic, while the surface forcing reverses seasonally. In this study, we hypothesize that the inflow through Qiongzhou Strait, a shallow and narrow channel between Hainan Island and the Chinese mainland, is responsible for maintaining the cyclonic circulation in the summer. Besides the requirements of mass conservation and bathymetry constraint, this flow, even with a rather small transport, carries a considerable amount of potential vorticity (PV) into the gulf, and the integral constraint of PV requires the presence of a frictional torque to be associated with a cyclonic circulation. Several numerical experiments with a three-dimensional model have been conducted to test this hypothesis. When the westward flow through Qiongzhou Strait is blocked, the model simulates an anticyclonic circulation in the summer. When the westward flow through Qiongzhou Strait is allowed, the circulation changes to a cyclonic one, consistent with our hypothesis.This study is supported by the National Basic Research Program of China under contract 2005CB422302 and 2007CB411804, the key project of the International Science and Technology Cooperation program of China under contract 2006DFB21250, and the 111 project under contract B07036

    Clinical and radiological characteristics of pediatric COVID-19 before and after the Omicron outbreak: a multi-center study

    Get PDF
    IntroductionThe emergence of the Omicron variant has seen changes in the clinical and radiological presentations of COVID-19 in pediatric patients. We sought to compare these features between patients infected in the early phase of the pandemic and those during the Omicron outbreak.MethodsA retrospective study was conducted on 68 pediatric COVID-19 patients, of which 31 were infected with the original SARS-CoV-2 strain (original group) and 37 with the Omicron variant (Omicron group). Clinical symptoms and chest CT scans were examined to assess clinical characteristics, and the extent and severity of lung involvement.ResultsPediatric COVID-19 patients predominantly had normal or mild chest CT findings. The Omicron group demonstrated a significantly reduced CT severity score than the original group. Ground-glass opacities were the prevalent radiological findings in both sets. The Omicron group presented with fewer symptoms, had milder clinical manifestations, and recovered faster than the original group.DiscussionThe clinical and radiological characteristics of pediatric COVID-19 patients have evolved with the advent of the Omicron variant. For children displaying severe symptoms warranting CT examinations, it is crucial to weigh the implications of ionizing radiation and employ customized scanning protocols and protective measures. This research offers insights into the shifting disease spectrum, aiding in the effective diagnosis and treatment of pediatric COVID-19 patients

    Ginsenoside Rb1 and Rd Remarkably Inhibited the Hepatic Uptake of Ophiopogonin D in Shenmai Injection Mediated by OATPs/oatps

    No full text
    Shenmai injection (SMI) is derived from traditional Chinese herbal prescription Shendong yin and widely used for treating cardiovascular diseases. Ophiopogonin D (OPD) is one of the main active components of SMI. The hepatic uptake of OPD is mediated by organic anion-transporting polypeptides (OATPs/oatps) and inhibited by some other components in SMI. This study aimed to identify the active components of SMI responsible for the inhibitory effects on hepatic uptake of OPD in rats and explore the compatibility mechanisms of complex components in SMI based on OATPs/oatps. The known effective fractions, the known components in Shenmai Formula, and the fractions obtained from SMI by HPLC gradual-separation technology were individually/combinedly tested for their effects on OPD uptake in rat primary hepatocytes and recombinant OATP1B1/OATP1B3-expressing HEK293T cells. The results indicated that the OPD uptake was inhibited by panaxadiol-type ginsenosides (ginsenoside Rb1 and Rd), but slightly influenced by panaxatriol-type ginsenosides in rat primary hepatocytes and recombinant cells. The fractions of SMI-3-1 (0–11 min) and SMI-3-3 (15–20 min) obtained by HPLC gradual-separation technology were proved to be the major effective fractions that influenced the OPD uptake, and subsequently identified as ginsenoside Rb1 and Rd, respectively. The plasma concentrations of OPD in rats given OPD+ginsenoside Rb1+ginsenoside Rd were higher compared to rats given OPD alone at the same dose. In conclusion, ginsenoside Rb1 and Rd are the major effective components in SMI that remarkably inhibited the hepatic OPD uptake mediated by OATPs/oatps. The interaction of complex components by OATPs/oatps may be one of the important compatibility mechanisms in SMI

    Effect of Zn/ZSM-5 and FePO4 Catalysts on Cellulose Pyrolysis

    No full text
    A series of Zn/ZSM-5 catalysts with different Zn contents and FePO4 were used to pyrolyze cellulose to produce value added chemicals. The nature of these catalysts was characterized by ammonia-temperature programmed desorption (NH3-TPD), IR spectroscopy of pyridine adsorption, and X-ray diffraction (XRD) techniques. Noncatalytic and catalytic pyrolytic behaviors of cellulose were studied by thermogravimetric (TG) technique. The pyrolytic liquid products, that is, the biooils, were analyzed by gas chromatography-mass spectrometry (GC-MS). The major components of the biooils are anhydrosugars such as levoglucosan (LGA), 1,6-anhydro-β-D-glucofuranose (AGF), levoglucosenone (LGO, 1,6-anhydro-3,4-dideoxy-β-D-pyranosen-2-one), and 1,4:3,6-dianhydro-α-D-glucopyranose (DGP), as well as furan derivatives, alcohols, and so forth. Zn/ZSM-5 samples with Brønsted and Lewis acid sites and the FePO4 catalyst with Lewis acid sites were found to have a significant effect on the pyrolytic behaviors of cellulose and product distribution. These results show that Brønsted and Lewis acid sites modified remarkably components of the biooil, which could promote the production of furan compounds and LGO. On the basis of the findings, a model was proposed to describe the pyrolysis pathways of cellulose catalyzed by the solid acid catalysts

    F3MB(PANDER) decreases mice hepatic triglyceride and is associated with decreased DGAT1 expression.

    No full text
    Pancreatic-derived factor (PANDER, also named as FAM3B) is secreted by pancreatic α and β cells. Increasing evidence suggests that it may serve a hormonal function related to glycemic and lipid metabolism. In this study, we investigated the effects of PANDER overexpression on hepatic and adipose triglyceride metabolism in high-fat diet-fed male C57BL/6 mice.PANDER overexpression was achieved by tail-vein injection of recombinant Ad-PANDER and Ad-GFP injected mice served as a control. The TG metabolism in both groups were compared.Adenoviral-mediated overexpression of PANDER did not affect body weight, food consumption, or liver enzymes. The triglyceride (TG) content of both liver and adipose tissue was significantly decreased in Ad-PANDER mice (liver: 6.16±1.89 mg/g vs. control 14.95±2.27 mg/g, P<0.05; adipose: 39.31±1.99 mg/100mg vs. 47.22±2.21 mg/100mg, P<0.05). The free fatty acid (FFA) content of adipose tissue in Ad-PANDER mice was also decreased (1.38±0.18 mg/g vs. 2.77±0.31 mg/g, P<0.01). The investigation of key enzymes of triglyceride hydrolysis and FFA oxidation in liver and adipose tissue showed that p-HSL/HSL was significantly increased and that DGAT1 gene and protein expression were significantly reduced in the liver of PANDER-overexpressing mice. PKA phosphorylation was also significantly increased in the livers of Ad-PANDER mice. No differences in ATGL, CPT1, ACOX1, or DGAT2 expression were observed.Overexpression of PANDER is associated with observable decreases in TG, increases in PKA phosphorylation, and decreased DGAT1 expression, suggesting a possible interrelationship. The mechanisms by which this occurs remain to be elucidated

    Impact of synoptic patterns and meteorological elements on the wintertime haze in the Beijing-Tianjin-Hebei region, China from 2013 to 2017

    No full text
    Meteorological conditions play a key role in formation of air pollution, determining dispersion or accumulation of air pollutants. Aggressive emission mitigation measures have been taken recently in the Beijing-Tianjin-Hebei region (BTH), China, but pervasive and persistent haze still frequently engulfs this region during wintertime. Occurrence frequency of unfavorable meteorological conditions in winter is anticipated to constitute a significantly important factor in driving the heavy haze formation in BTH. Large scale synoptic patterns influencing BTH during the wintertime from 2013 to 2017 are categorized into six types, including "north-low", "southwest-trough", "southeast-high", "southeast-trough", "transition", and "inland-high" using the NCEP reanalysis data. "Southwest-trough" and "southeast-high" are defined as favorable synoptic patterns and the remaining four categories are unfavorable ones based on FLEXPART simulations. Compared to measurements of fine particulate matter (PM2.5) in BTH, favorable synoptic conditions generally correspond to the low level or decreasing trend of PM2.5 concentrations while under unfavorable conditions PM2.5 concentrations are high or increasing. Occurrence of wintertime haze episodes in BTH correlates well with the evolution trend of unfavorable synoptic patterns from 2013 to 2017 although the anthropogenic emissions have substantially decreased. PM2.5 concentrations also exhibit correlations with local meteorological elements, including winds, temperature, and relative humidity, which are ultimately steered by large scale synoptic situations. The WRF-Chem model simulations further reveal the critical role of large-scale synoptic patterns in the heavy haze formation. Overall, under unfavorable synoptic situations, emission mitigation is the best choice to improve the air quality in BTH. (C) 2019 Elsevier B.V. All rights reserved
    corecore