55 research outputs found

    Deep Learning-Based Frequency Offset Estimation

    Full text link
    In wireless communication systems, the asynchronization of the oscillators in the transmitter and the receiver along with the Doppler shift due to relative movement may lead to the presence of carrier frequency offset (CFO) in the received signals. Estimation of CFO is crucial for subsequent processing such as coherent demodulation. In this brief, we demonstrate the utilization of deep learning for CFO estimation by employing a residual network (ResNet) to learn and extract signal features from the raw in-phase (I) and quadrature (Q) components of the signals. We use multiple modulation schemes in the training set to make the trained model adaptable to multiple modulations or even new signals. In comparison to the commonly used traditional CFO estimation methods, our proposed IQ-ResNet method exhibits superior performance across various scenarios including different oversampling ratios, various signal lengths, and different channel

    Graph-Based Similarity of Neural Network Representations

    Full text link
    Understanding the black-box representations in Deep Neural Networks (DNN) is an essential problem in deep learning. In this work, we propose Graph-Based Similarity (GBS) to measure the similarity of layer features. Contrary to previous works that compute the similarity directly on the feature maps, GBS measures the correlation based on the graph constructed with hidden layer outputs. By treating each input sample as a node and the corresponding layer output similarity as edges, we construct the graph of DNN representations for each layer. The similarity between graphs of layers identifies the correspondences between representations of models trained in different datasets and initializations. We demonstrate and prove the invariance property of GBS, including invariance to orthogonal transformation and invariance to isotropic scaling, and compare GBS with CKA. GBS shows state-of-the-art performance in reflecting the similarity and provides insights on explaining the adversarial sample behavior on the hidden layer space

    Subgraph Networks Based Contrastive Learning

    Full text link
    Graph contrastive learning (GCL), as a self-supervised learning method, can solve the problem of annotated data scarcity. It mines explicit features in unannotated graphs to generate favorable graph representations for downstream tasks. Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations. Graph augmentation produces augmented views by graph perturbations. These views preserve a locally similar structure and exploit explicit features. However, these methods have not considered the interaction existing in subgraphs. To explore the impact of substructure interactions on graph representations, we propose a novel framework called subgraph network-based contrastive learning (SGNCL). SGNCL applies a subgraph network generation strategy to produce augmented views. This strategy converts the original graph into an Edge-to-Node mapping network with both topological and attribute features. The single-shot augmented view is a first-order subgraph network that mines the interaction between nodes, node-edge, and edges. In addition, we also investigate the impact of the second-order subgraph augmentation on mining graph structure interactions, and further, propose a contrastive objective that fuses the first-order and second-order subgraph information. We compare SGNCL with classical and state-of-the-art graph contrastive learning methods on multiple benchmark datasets of different domains. Extensive experiments show that SGNCL achieves competitive or better performance (top three) on all datasets in unsupervised learning settings. Furthermore, SGNCL achieves the best average gain of 6.9\% in transfer learning compared to the best method. Finally, experiments also demonstrate that mining substructure interactions have positive implications for graph contrastive learning.Comment: 12 pages, 6 figure

    Understanding the Dynamics of DNNs Using Graph Modularity

    Full text link
    There are good arguments to support the claim that deep neural networks (DNNs) capture better feature representations than the previous hand-crafted feature engineering, which leads to a significant performance improvement. In this paper, we move a tiny step towards understanding the dynamics of feature representations over layers. Specifically, we model the process of class separation of intermediate representations in pre-trained DNNs as the evolution of communities in dynamic graphs. Then, we introduce modularity, a generic metric in graph theory, to quantify the evolution of communities. In the preliminary experiment, we find that modularity roughly tends to increase as the layer goes deeper and the degradation and plateau arise when the model complexity is great relative to the dataset. Through an asymptotic analysis, we prove that modularity can be broadly used for different applications. For example, modularity provides new insights to quantify the difference between feature representations. More crucially, we demonstrate that the degradation and plateau in modularity curves represent redundant layers in DNNs and can be pruned with minimal impact on performance, which provides theoretical guidance for layer pruning. Our code is available at https://github.com/yaolu-zjut/Dynamic-Graphs-Construction.Comment: Accepted by ECCV 202
    • …
    corecore