422 research outputs found

    Thermodynamic model of coherent island formation on vicinal substrate

    Get PDF
    A thermodynamic model has been proposed to address the formation of coherent island on the vicinal substrate. The morphological transition from square based island to elongated based one with various substrate misorientations is described. The initial stage of nucleation and growth process of islands in Stranski-Krastanow system is studied by taking into account the elastic deformations and the change of energy in the case of two-dimensional growth mode. The theoretical analysis shows the minimum nucleation barrier of island is on the decrease with increment of substrate misorientation, which means the nucleation of island on vicinal substrate is more favorable than that on flat substrate. By using the fitting data of experimental results done by Persichetti et al., [Phys. Rev. Lett. 104, 036104 (2010) and Phys. Rev. B 82, 121309(R) (2010)], we provide a meaningful explanation of the experimental observations

    Noise-induced dynamics and photon statistics in bimodal quantum-dot micropillar lasers

    Full text link
    Emission characteristics of quantum-dot micropillar lasers (QDMLs) are located at the intersection of nanophotonics and nonlinear dynamics, which provides an ideal platform for studying the optical interface between classical and quantum systems. In this work, a noise-induced bimodal QDML with orthogonal dual-mode outputs is modeled, and nonlinear dynamics, stochastic mode jumping and quantum statistics with the variation of stochastic noise intensity are investigated. Noise-induced effects lead to the emergence of two intensity bifurcation points for the strong and the weak mode, and the maximum output power of the strong mode becomes larger as the noise intensity increases. The anti-correlation of the two modes reaches the maximum at the second intensity bifurcation point. The dual-mode stochastic jumping frequency and effective bandwidth can exceed 100 GHz and 30 GHz under the noise-induced effect. Moreover, the noise-induced photon correlations of both modes simultaneously exhibit super-thermal bunching effects (g(2)(0)>2g^{(2)}(0)>2) in the low injection current region. The g(2)(0)g^{(2)}(0)-value of the strong mode can reach over 6 in the high injection current region. Photon bunching (g(2)(0)>1g^{(2)}(0)>1) of both modes is observed over a wide range of noise intensities and injection currents. In the presence of the noise-induced effect, the photon number distribution of the strong or the weak mode is a mixture of Bose-Einstein and Poisson distributions. As the noise intensity increases, the photon number distribution of the strong mode is dominated by the Bose-Einstein distribution, and the proportion of the Poisson distribution is increased in the high injection current region, while that of the weak mode is reduced. Our results contribute to the development preparation of super-bunching quantum integrated light sources for improving the spatiotemporal resolution of quantum sensing measurements.Comment: 17 pages, 9 figure

    Research on the Standardization of Drug Test Data

    Full text link
    In order to solve the problems that test data of the drug control institution is not standardized and low quality, the data exchange and information sharing are realized, the data value is mined and the information level is improved. Method: combined with the business of control institution and information practice, refer to the practice of relevant standard development; carry out the research on standard development work from the content, principle and process. Result and conclusion: this research completes development of the local standard of Guangdong drug test data, which can provide reference for the development of similar standards in future

    Neural Network Based Edge Detection for Automated Medical Diagnosis

    Get PDF
    Edge detection is an important but rather difficult task in image processing and analysis. In this research, artificial neural networks are employed for edge detection based on its adaptive learning and nonlinear mapping properties. Fuzzy sets are introduced during the training phase to improve the generalization ability of neural networks. The application of the proposed neural network approach to the edge detection of medical images for automated bladder cancer diagnosis is also investigated. Successful computer simulation results are obtained

    Effects of Chilling on the Structure, Function and Development of Chloroplasts

    Get PDF
    Chloroplasts are the organelles that perform energy transformation in plants. The normal physiological functions of chloroplasts are essential for plant growth and development. Chilling is a common environmental stress in nature that can directly affect the physiological functions of chloroplasts. First, chilling can change the lipid membrane state and enzyme activities in chloroplasts. Then, the efficiency of photosynthesis declines, and excess reactive oxygen species (ROS) are produced. On one hand, excess ROS can damage the chloroplast lipid membrane; on the other hand, ROS also represent a stress signal that can alter gene expression in both the chloroplast and nucleus to help regenerate damaged proteins, regulate lipid homeostasis, and promote plant adaptation to low temperatures. Furthermore, plants assume abnormal morphology, including chlorosis and growth retardation, with some even exhibiting severe necrosis under chilling stress. Here, we review the response of chloroplasts to low temperatures and focus on photosynthesis, redox regulation, lipid homeostasis, and chloroplast development to elucidate the processes involved in plant responses and adaptation to chilling stress

    Case report: Cryoablation as a novel bridging strategy prior to CAR-T cell therapy for B cell malignancies with bulky disease

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has emerged as a powerful immunotherapy in relapsed/refractory (R/R) hematological malignancies, especially in R/R B-cell acute lymphocytic leukemia (B-ALL), non-Hodgkin lymphoma (NHL), and multiple myeloma (MM). To prevent disease progression and reduce tumor burden during CAR-T cell manufacturing, bridging therapies prior to CAR-T cell infusion are crucial. At present, it has been demonstrated that targeted therapy, radiotherapy and autologous stem cell transplantation (ASCT) could serve as effective bridging strategies. However, whether cryoablation could serve as a novel bridging strategy is unknown. In this paper, we report 2 cases of R/R B cell malignancies with bulky disease that were successfully treated with a combination of cryoablation and CAR-T cell therapy. Patient 1 was a 65-year-old female who was diagnosed with R/R MM with extramedullary disease (EMD). She was enrolled in the anti-BCMA CAR-T cell clinical trial. Patient 2 was a 70-year-old man who presented with a subcutaneous mass in the right anterior thigh and was diagnosed with primary cutaneous diffuse large B cell lymphoma, leg type (PCLBCL-LT) 1 year ago. He failed multiline chemotherapies as well as radiotherapy. Thus, he requested anti-CD19 CAR-T cell therapy. Unfortunately, they all experienced local progression during CAR-T cell manufacturing. To rapidly achieve local tumor control and reduce tumor burden, they both received cryoablation as a bridging therapy. Patient 1 achieved a very good partial response (VGPR) 1 month after CAR-T cell infusion, and patient 2 achieved a partial response (PR) 1 month after CAR-T cell infusion. In addition, adverse effects were tolerable and manageable. Our study demonstrated the favorable safety and efficacy of combination therapy with cryoablation and CAR-T cell therapy for the first time, and it also indicates that cryoablation could serve as a novel therapeutic strategy for local tumor control in B cell malignancies

    The Effect of Fucoidan on Cellular Oxidative Stress and the CatD-Bax Signaling Axis in MN9D Cells Damaged by 1-Methyl-4-Phenypyridinium

    Get PDF
    Background: The purpose of this study was to investigate the impact of fucoidan (FUC) on the oxidative stress response and lysosomal apoptotic pathways in the Parkinson disease (PD) cell model.Methods: The Dopaminergic nerve precursor cell line(MN9D) cells that served as a PD model in this study underwent damage induced by 100 μM 1-methyl-4-phenyl pyridine (MPP+). Cell viability was assessed after FUC treatment and intracellular SOD GSH was measured via immunofluorescence assay. Cellular changes in cathepsin D, Autophagy marker Light Chain 3-II (LC3-II), and apoptotic protein Bax were assessed by Western blot. The expression of Cat D, LC3-II, and B cell lymphoma-2-associated x protein (Bax) was also measured after addition of the cathepsin inhibitor, pepstatin A.Results: The results indicated that MN9D cell viability decreased by 50% within 24 h after 100 μM MPP+ induced toxicity. Pretreatment with 100 μM Fucoidan reduced cellular expression of LC3-II and CatD in 3 h and suppressed the induction of Bax protein. After pepstatin A treatment, Bax expression was significantly downregulated.FUC reversed the reduction of superoxide dismutase (SOD) L-Glutathione(GSH), decreased cell viability, and apoptosis induced by MPP+ in 6 h, suggesting that Fucoidan can attenuate damage to MN9D cells induced by MPP+.Conclusions: Fucoidan protected lysosomes, reduced the expression of LC3-II, inhibited the expression of CatD-Bax and the oxidative stress response, suppressed apoptosis, and thus conferred protective effects for dopaminergic neural cells. FUC may have neuroprotective effects on PD and further research is needed
    corecore