5 research outputs found

    Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    Full text link
    Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability

    Insights into the Regulation of Rhizosphere Bacterial Communities by Application of Bio-organic Fertilizer in Pseudostellaria heterophylla Monoculture Regime

    Full text link
    The biomass and quality of Pseudostellariae heterophylla suffers a significant decline under monoculture. Since rhizosphere microbiome plays crucial roles in soil health, deep pyrosequencing combined with qPCR was applied to characterize the composition and structure of soil bacterial community under monoculture and different amendments. The results showed compared with the first-year planted (FP), second-year monoculture of P. heterophylla (SP) led to a significant decline in yield and resulted in a significant increase in Fusarium oxysporum but a decline in Burkholderia spp. Bio-organic fertilizer (MT) formulated by combining antagonistic bacteria with organic matter could significantly promote the yield by regulating rhizosphere bacterial community. However, organic fertilizer (MO) without antagonistic bacteria could not suppress Fusarium wilt. Multivariate statistics analysis showed a distinct separation between the healthy samples (FP and MT) and the unhealthy samples (SP and MO), suggesting a strong relationship between soil microbial community and plant performance. Furthermore, we found the application of bio-organic fertilizer MT could significantly increase the bacterial community diversity and restructure microbial community with relatively fewer pathogenic F. oxysporum and more beneficial Burkholderia spp. In conclusion, the application of novel bio-organic fertilizer could effectively suppress Fusarium wilt by enriching the antagonistic bacteria and enhancing the bacterial diversity
    corecore