38 research outputs found

    Evaluation of testicular blood flow during testicular torsion surgery in children using the indocyanine green–guided near-infrared fluorescence imaging technique

    Get PDF
    ObjectiveThis study investigates the feasibility of the indocyanine green–guided near-infrared fluorescence (ICG-NIRF) imaging technique in evaluating testicular blood flow during testicular torsion (TT) surgery in pediatric cases.MethodsWe retrospectively analyzed the eight pediatric patients with TT who underwent surgery in our hospital between February and July 2023. The intraoperative two-step method of ICG-NIRF imaging and testicular incision was used to evaluate the testicular blood flow, followed by a selection of different surgical methods. The removed testes were pathologically examined after surgery, and all patients were followed up 1 month after surgery to evaluate testicular blood flow using gray-scale ultrasound and color Doppler flow imaging (CDFI).ResultsEight pediatric TT patients aged 1–16 years, with a median age of 11.5 years, were enrolled. Time from the onset ranged from 4 to 72 h (mean 26.13 ± 25.09 h). A total of eight testes were twisted, including four on the left side and four on the right side. The twisting direction of the testes was clockwise in four cases and counterclockwise in four cases. The rotation of torsion was 180°–1,080° (mean 472.5° ± 396°). There was no statistically significant difference in the imaging time between the four patients with testicular blood vessel imaging on both the torsional and normal sides (P > 0.05). The postoperative recovery was uneventful, with no complications during the follow-up period of 1 month. The postoperative histopathological results of three patients who underwent orchiectomy showed extensive hemorrhage, degeneration, and necrosis of the testicular tissue. Among the five patients who underwent orchiopexy, a gray-scale ultrasound and CDFI examinations showed uniform internal echo of the testes and normal blood flow signals in four patients. One patient with no testicular blood vessel imaging on the torsional side showed uneven internal echo of the testis and no blood flow signals.ConclusionICG-NIRF imaging is a feasible method to evaluate testicular blood flow during TT surgery. Testicular blood vessel imaging within 5 minutes after ICG injection might be the basis for testicular retention during TT surgery

    Body Composition and Genetic Lipodystrophy Risk Score Associate With Nonalcoholic Fatty Liver Disease and Liver Fibrosis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150618/1/hep41391.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150618/2/hep41391_am.pd

    Cross-Perspective Human Behavior Recognition Based on a Joint Sparse Representation and Distributed Adaptation Algorithm Combined with Wireless Optical Transmission

    No full text
    Traditional human behavior recognition needs many training samples. Signal transmission of images and videos via visible light in the body is crucial for detecting specific actions to accelerate behavioral recognition. Joint sparse representation techniques improve identification accuracy by utilizing multi-perspective information, while distributional adaptive techniques enhance robustness by adjusting feature distributions between different perspectives. Combining both techniques enhances recognition accuracy and robustness, enabling efficient behavior recognition in complex environments with multiple perspectives. In this paper, joint sparse representation has been combined with distributed adaptation algorithm to recognize human behavior under the fusion algorithm, and verify the feasibility of the fusion algorithm through experimental analysis. The research objective of this article is to explore the use of the combination of joint sparse representation technology and distributed adaptive technology in the recall and accuracy of human detection, combined with the cross perspective human behavior recognition of wireless optical transmission. The experimental results showed that in the process of human detection, the recall and precision of the fusion algorithm in this paper reached 92% and 90% respectively, which are slightly higher than the comparison algorithm. In the experiment of recognition accuracy of different actions, the recognition accuracy of the fusion algorithm in this paper was also higher than that of the control algorithm. It can be seen that the fusion of joint sparse representation and distributed adaptation algorithms, as well as wireless communication light technology, are of great significance for human behavior recognition

    The complete chloroplast genome of copper-tolerance plant Elsholtzia splendens

    No full text
    Elsholtzia splendens is a copper-tolerance plant colonized in copper mines in southern China. In this study, we sequenced and de novo assembled the complete chloroplast genome of E. splendens. The complete chloroplast genome is 150,761 bp (37.8% of GC) in length and contains 87 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic analysis revealed that among the 11 Lamiaceae species, Perilla citriodor is the closest relative of E. splendens. The complete chloroplast genome of E. splendens provides a valuable resource for comparative and evolutionary analysis among Lamiaceae species and may be helpful in understanding the molecular mechanism of copper tolerance in E. splendens

    Two-Component System Response Regulator <i>ompR</i> Regulates Mussel Settlement through Exopolysaccharides

    No full text
    The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p ompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals

    AMPK Promotes Larval Metamorphosis of Mytilus coruscus

    No full text
    Metamorphosis is a critical process in the transition from planktonic life to benthic life for marine invertebrates, which is accompanied by a large amount of energy consumption. Previous studies have proved that AMP-activated protein kinase (AMPK), as a vital energy regulator, plays a prominent role in mediating the growth and development of terrestrial animals. However, its function in the growth and development of marine invertebrates, especially in metamorphosis, remains elusive. This study explored the function of AMPK in the larval metamorphosis of Mytilus coruscus. The full-length cDNA of AMPK genes in M. coruscus was cloned and characterized, which is composed of three subunits, McAMPK&alpha;, McAMPK&beta;, and McAMPK&gamma;. Pharmacological tests demonstrated that through the application of an AMPK activator, AMP substantially enhanced the larval metamorphosis rate (p &lt; 0.05). By contrast, the larval metamorphosis rate decreased significantly after being treated with the AMPK inhibitor Compound C (p &lt; 0.05). McAMPK gene knock-down resulted in a reduction in McAMPK gene expression (p &lt; 0.05), and the larval metamorphosis of M. coruscus was significantly restrained (p &lt; 0.05). These results indicated that AMPK signaling is vital in the larval metamorphosis of M. coruscus, which advances further understanding in exploring the molecular mechanisms in the metamorphosis of marine invertebrate larvae

    High-Speed Indoor Navigation System based on Visible Light and Mobile Phone

    No full text

    Common and Complex Notch1

    No full text
    corecore