1,204 research outputs found
Specific heat of the simple-cubic Ising model
We provide an expression quantitatively describing the specific heat of the
Ising model on the simple-cubic lattice in the critical region. This expression
is based on finite-size scaling of numerical results obtained by means of a
Monte Carlo method. It agrees satisfactorily with series expansions and with a
set of experimental results. Our results include a determination of the
universal amplitude ratio of the specific-heat divergences at both sides of the
critical point.Comment: 20 pages, 3 figure
Lost at starting line : predicting maladaptation of university freshmen based on educational big data
The transition from secondary education to higher education could be challenging for most freshmen. For students who fail to adjust to university life smoothly, their status may worsen if the university cannot offer timely and proper guidance. Helping students adapt to university life is a long-term goal for any academic institution. Therefore, understanding the nature of the maladaptation phenomenon and the early prediction of “at-risk” students are crucial tasks that urgently need to be tackled effectively. This article aims to analyze the relevant factors that affect the maladaptation phenomenon and predict this phenomenon in advance. We develop a prediction framework (MAladaptive STudEnt pRediction, MASTER) for the early prediction of students with maladaptation. First, our framework uses the SMOTE (Synthetic Minority Oversampling Technique) algorithm to solve the data label imbalance issue. Moreover, a novel ensemble algorithm, priority forest, is proposed for outputting ranks instead of binary results, which enables us to perform proactive interventions in a prioritized manner where limited education resources are available. Experimental results on real-world education datasets demonstrate that the MASTER framework outperforms other state-of-art methods. © 2022 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals LLC on behalf of Association for Information Science and Technology
Educational anomaly analytics : features, methods, and challenges
Anomalies in education affect the personal careers of students and universities' retention rates. Understanding the laws behind educational anomalies promotes the development of individual students and improves the overall quality of education. However, the inaccessibility of educational data hinders the development of the field. Previous research in this field used questionnaires, which are time- and cost-consuming and hardly applicable to large-scale student cohorts. With the popularity of educational management systems and the rise of online education during the prevalence of COVID-19, a large amount of educational data is available online and offline, providing an unprecedented opportunity to explore educational anomalies from a data-driven perspective. As an emerging field, educational anomaly analytics rapidly attracts scholars from a variety of fields, including education, psychology, sociology, and computer science. This paper intends to provide a comprehensive review of data-driven analytics of educational anomalies from a methodological standpoint. We focus on the following five types of research that received the most attention: course failure prediction, dropout prediction, mental health problems detection, prediction of difficulty in graduation, and prediction of difficulty in employment. Then, we discuss the challenges of current related research. This study aims to provide references for educational policymaking while promoting the development of educational anomaly analytics as a growing field. Copyright © 2022 Guo, Bai, Tian, Firmin and Xia
Graduate employment prediction with bias
The failure of landing a job for college students could cause serious social consequences such as drunkenness and suicide. In addition to academic performance, unconscious biases can become one key obstacle for hunting jobs for graduating students. Thus, it is necessary to understand these unconscious biases so that we can help these students at an early stage with more personalized intervention. In this paper, we develop a framework, i.e., MAYA (Multi-mAjor emploYment stAtus) to predict students’ employment status while considering biases. The framework consists of four major components. Firstly, we solve the heterogeneity of student courses by embedding academic performance into a unified space. Then, we apply a generative adversarial network (GAN) to overcome the class imbalance problem. Thirdly, we adopt Long Short-Term Memory (LSTM) with a novel dropout mechanism to comprehensively capture sequential information among semesters. Finally, we design a bias-based regularization to capture the job market biases. We conduct extensive experiments on a large-scale educational dataset and the results demonstrate the effectiveness of our prediction framework. Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record*
- …