53 research outputs found

    Evaluation of Wind Loads on Square Transmission Towers with Angle Members under Skewed Winds

    No full text
    In the current wind loading codes for transmission towers, the wind loads under skewed winds are characterized by the global drag coefficient, skewed wind load factor, and wind load distribution factor. The recommended global drag coefficients in the codes borrowed from the lattice frames and trusses show discrepancy with the wind tunnel test. The skewed wind load factor reflecting the amplification of wind loads at skewed directions is demonstrated to vary with the tower geometry, which is not factored in the codes. In addition, the wind load distribution factor in the codes is determined by assuming that the wind load direction is the same as the wind direction, whose rationality needs to be examined. In this paper, a series of wind tunnel tests on the body, cross-arm and head sections of the widely used square angle-steel transmission towers are performed under multi-directional winds. Based on wind tunnel tests, the three coefficients and factors in the codes are extensively examined, and new formulas for them are calibrated. The results of this study could provide more accurate estimate of wind loads on the transmission towers

    Can statistic adjustment of OR minimize the potential confounding bias for meta-analysis of case-control study? A secondary data analysis

    No full text
    Abstract Background Different confounder adjustment strategies were used to estimate odds ratios (ORs) in case-control study, i.e. how many confounders original studies adjusted and what the variables are. This secondary data analysis is aimed to detect whether there are potential biases caused by difference of confounding factor adjustment strategies in case-control study, and whether such bias would impact the summary effect size of meta-analysis. Methods We included all meta-analyses that focused on the association between breast cancer and passive smoking among non-smoking women, as well as each original case-control studies included in these meta-analyses. The relative deviations (RDs) of each original study were calculated to detect how magnitude the adjustment would impact the estimation of ORs, compared with crude ORs. At the same time, a scatter diagram was sketched to describe the distribution of adjusted ORs with different number of adjusted confounders. Results Substantial inconsistency existed in meta-analysis of case-control studies, which would influence the precision of the summary effect size. First, mixed unadjusted and adjusted ORs were used to combine individual OR in majority of meta-analysis. Second, original studies with different adjustment strategies of confounders were combined, i.e. the number of adjusted confounders and different factors being adjusted in each original study. Third, adjustment did not make the effect size of original studies trend to constringency, which suggested that model fitting might have failed to correct the systematic error caused by confounding. Conclusions The heterogeneity of confounder adjustment strategies in case-control studies may lead to further bias for summary effect size in meta-analyses, especially for weak or medium associations so that the direction of causal inference would be even reversed. Therefore, further methodological researches are needed, referring to the assessment of confounder adjustment strategies, as well as how to take this kind of bias into consideration when drawing conclusion based on summary estimation of meta-analyses

    Evaluation of Wind Loads on Square Transmission Towers with Angle Members under Skewed Winds

    No full text
    In the current wind loading codes for transmission towers, the wind loads under skewed winds are characterized by the global drag coefficient, skewed wind load factor, and wind load distribution factor. The recommended global drag coefficients in the codes borrowed from the lattice frames and trusses show discrepancy with the wind tunnel test. The skewed wind load factor reflecting the amplification of wind loads at skewed directions is demonstrated to vary with the tower geometry, which is not factored in the codes. In addition, the wind load distribution factor in the codes is determined by assuming that the wind load direction is the same as the wind direction, whose rationality needs to be examined. In this paper, a series of wind tunnel tests on the body, cross-arm and head sections of the widely used square angle-steel transmission towers are performed under multi-directional winds. Based on wind tunnel tests, the three coefficients and factors in the codes are extensively examined, and new formulas for them are calibrated. The results of this study could provide more accurate estimate of wind loads on the transmission towers

    Association between HLA-B*15:02

    No full text
    corecore