211 research outputs found

    Stochastic phenotype transition of a single cell in an intermediate region of gene-state switching

    Full text link
    Multiple phenotypic states often arise in a single cell with different gene-expression states that undergo transcription regulation with positive feedback. Recent experiments have shown that at least in E. coli, the gene state switching can be neither extremely slow nor exceedingly rapid as many previous theoretical treatments assumed. Rather it is in the intermediate region which is difficult to handle mathematically.Under this condition, from a full chemical-master-equation description we derive a model in which the protein copy-number, for a given gene state, follow a deterministic mean-field description while the protein synthesis rates fluctuate due to stochastic gene-state switching. The simplified kinetics yields a nonequilibrium landscape function, which, similar to the energy function for equilibrium fluctuation, provides the leading orders of fluctuations around each phenotypic state, as well as the transition rates between the two phenotypic states. This rate formula is analogous to Kramers theory for chemical reactions. The resulting behaviors are significantly different from the two limiting cases studied previously.Comment: 6 pages,4 figure

    Genome-Wide Study of mRNA Degradation and Transcript Elongation in Escherichia coli

    Get PDF
    An essential part of gene expression is the coordination of RNA synthesis and degradation, which occurs in the same cellular compartment in bacteria. Here, we report a genome‐wide RNA degradation study in Escherichia coli using RNA‐seq, and present evidence that the stereotypical exponential RNA decay curve obtained using initiation inhibitor, rifampicin, consists of two phases: residual RNA synthesis, a delay in the interruption of steady state that is dependent on distance relative to the mRNA's 5′ end, and the exponential decay. This gives a more accurate RNA lifetime and RNA polymerase elongation rate simultaneously genome‐wide. Transcripts typically have a single RNA decay constant along all positions, which is distinct between different operons, indicating that RNA stability is unlikely determined by local sequences. These measurements allowed us to establish a model for RNA processing involving co‐transcriptional degradation, providing quantitative description of the macromolecular coordination in gene expression in bacteria on a system‐wide level.Chemistry and Chemical Biolog

    Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    Get PDF
    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.Chemistry and Chemical Biolog
    corecore