43 research outputs found

    Dual selective iron chelating probes for the monitoring of mitochondrial labile iron pools

    Get PDF
    Mitochondria-targeted peptides incorporating dual fluorescent and selective iron chelators have been designed as novel biosensors for the mitochondrial labile iron pool.</p

    Monitoring intracellular labile iron pools: A novel fluorescent iron(III) sensor as a potential non-invasive diagnosis tool.

    No full text
    The physiological and pathophysiological importance of intracellular redox active "labile" iron has created a significant need for improved noninvasive diagnostic tools to reliably monitor iron metabolism in living cells. In this context, fluorescent iron-sensitive chemosensors in combination with digital fluorescence spectroscopic methods have proven to be highly sensitive and indispensable tools to determine cellular iron homeostasis. Recently, application of fluorescent iron sensors has led to the identification of a complex sub-cellular iron compartmentation. Cell organelle-specific iron sensors will significantly contribute to enhance fundamental knowledge of cellular iron trafficking, representing a crucial prerequisite for the future development of therapeutic strategies in iron dysregulatory diseases. Here we present physicochemical characterization and functional investigation of a new 3-hydroxypyridin-4-one based fluorescent iron(III) sensor, exclusively monitoring labile iron pools in the endosomal/lysosomal compartments. In vitro studies of the fluorescein labeled probe were carried out in murine bone marrow derived macrophages. Endosomal/lysosomal accumulation of the probe was revealed by confocal microscopy. Flow cytometry analyses demonstrated high sensitivity of the probe towards exogenous alterations of intracellular iron concentrations as well as in response to the chelation potency of iron chelators, clinically approved for treatment of iron-overload related diseases

    Chemistry and biology of siderophores

    No full text

    Iron speciation in the cytosol:An overview

    No full text

    Mode of iron(iii) chelation by hexadentate hydroxypyridinones

    No full text
    Tripodal hexadentate hydroxypyridin-4-ones are increasingly utilised as iron(iii) and gallium(iii) ligands, their attachment to proteins being particularly useful for positron emission tomography (PET). A tripodal ligand NTA(BuHP)3, which is reported to form 1 : 1 iron(iii) and gallium(iii) complexes in aqueous, media forms 2 : 2 complexes under physiological conditions.</p

    Targeting the lysosome: fluorescent iron(III) chelators to selectively monitor endosomal/lysosomal labile iron pools.

    No full text
    Iron-sensitive fluorescent chemosensors in combination with digital fluorescence spectroscopy have led to the identification of a distinct subcellular compartmentation of intracellular redox-active "labile" iron. To investigate the distribution of labile iron, our research has been focused on the development of fluorescent iron sensors targeting the endosomal/lysosomal system. Following the recent introduction of a series of 3-hydroxypyridin-4-one (HPO) based fluorescent probes we present here two novel HPO sensors capable of accumulating and monitoring iron exclusively in endosomal/lysosomal compartments. Flow cytometric and confocal microscopy studies in murine macrophages revealed endosomal/lysosomal sequestration of the probes and high responsiveness toward alterations of vesicular labile iron concentrations. This allowed assessment of cellular iron status with high sensitivity in response to the clinically applied medications desferrioxamine, deferiprone, and deferasirox. The probes represent a powerful class of sensors for quantitative iron detection and clinical real-time monitoring of subcellular labile iron levels in health and disease
    corecore