40 research outputs found

    A Student\u27s Guide to giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae

    Get PDF
    The discovery of infectious particles that challenge conventional thoughts concerning “what is a virus” has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning “giant viruses”, with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host–virus systems that fall into this “giant” category, demonstrating that this field of inquiry presents great opportunities for future research

    Holstein Cattle Face Re-Identification Unifying Global and Part Feature Deep Network with Attention Mechanism

    No full text
    In precision dairy farming, computer vision-based approaches have been widely employed to monitor the cattle conditions (e.g., the physical, physiology, health and welfare). To this end, the accurate and effective identification of individual cow is a prerequisite. In this paper, a deep learning re-identification network model, Global and Part Network (GPN), is proposed to identify individual cow face. The GPN model, with ResNet50 as backbone network to generate a pooling of feature maps, builds three branch modules (Middle branch, Global branch and Part branch) to learn more discriminative and robust feature representation from the maps. Specifically, the Middle branch and the Global branch separately extract the global features of middle dimension and high dimension from the maps, and the Part branch extracts the local features in the unified block, all of which are integrated to act as the feature representation for cow face re-identification. By performing such strategies, the GPN model not only extracts the discriminative global and local features, but also learns the subtle differences among different cow faces. To further improve the performance of the proposed framework, a Global and Part Network with Spatial Transform (GPN-ST) model is also developed to incorporate an attention mechanism module in the Part branch. Additionally, to test the efficiency of the proposed approach, a large-scale cow face dataset is constructed, which contains 130,000 images with 3000 cows under different conditions (e.g., occlusion, change of viewpoints and illumination, blur, and background clutters). The results of various contrast experiments show that the GPN outperforms the representative re-identification methods, and the improved GPN-ST model has a higher accuracy rate (up by 2.8% and 2.2% respectively) in Rank-1 and mAP, compared with the GPN model. In conclusion, using the Global and Part feature deep network with attention mechanism can effectively ameliorate the efficiency of cow face re-identification

    Treatment of Preserved Wastewater with UASB

    No full text
    The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB) reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment

    Treatment of Preserved Wastewater with UASB

    No full text
    The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB) reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment

    Tertiary Treatment Process of Preserved Wastewater

    No full text
    The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS), polyaluminium chloride (PAC), and polyaluminum ferric silicate (PAFSC), while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996)

    Tertiary Treatment Process of Preserved Wastewater

    No full text
    The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS), polyaluminium chloride (PAC), and polyaluminum ferric silicate (PAFSC), while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996)

    Commercially Available Materials Selection in Sustainable Design: An Integrated Multi-Attribute Decision Making Approach

    No full text
    This paper presents an integrated multi-attribute decision-making (MADM) approach to aid selection of commercially available materials in the context of sustainable design. The MADM couples grey relational analysis (GRA) with an analytic hierarchy process (AHP) to rank alternative materials in terms of their economic, environmental, and social performance. AHP is used to determine the corresponding weighting values for the selected indicators. In addition, a case example is used to verify the proposed MADM method and demonstrate its practical application. Three alternative polymer materials, i.e., poly(vinyl chloride) (PVC), polypropylene (PP), and polyethylene (PE), are examined to determine their sustainability for plastic pipe design. The associated MADM result and the limitations of the approach are discussed to lay the foundation for further improvement

    Recent advances in photocatalytic renewable energy production

    No full text
    The development of green and renewable energy is becoming increasingly more important in reducing environmental pollution and controlling CO2 discharge. Photocatalysis can be utilized to directly convert solar energy into chemical energy to achieve both the conversion and storage of solar energy. On this basis, photocatalysis is considered to be a prospective technology to resolve the current issues of energy supply and environmental pollution. Recently, several significant achievements in semiconductor-based photocatalytic renewable energy production have been reported. This review presents the recent advances in photocatalytic renewable energy production over the last three years by summarizing the typical and significant semiconductor-based and semiconductor-like photocatalysts for H2 production, CO2 conversion and H2O2 production. These reactions demonstrate how the basic principles of photocatalysis can be exploited for renewable energy production. Finally, we conclude our review of photocatalytic renewable energy production and provide an outlook for future related research
    corecore