299 research outputs found

    The capability enhancement of aluminium casting process by application of the novel CRIMSON method

    Get PDF
    The conventional foundry not only frequently uses batch melting, where the aluminium alloys are melted and held in a furnace for long time, sometimes as long as a complete shift, but also uses the gravity sand casting process where the molten aluminium alloys are transferred using a ladle from furnace to pour station and are poured into a mould. During the filling of the mould, the turbulent nature of the liquid metal gives rise to massive entrainment of the surface oxide films which are the subsequently trapped into the liquid and act as micro cracks. Also the long exposure time of the liquid surface to the surrounding environment during melting, transferring and filling will increase the level of hydrogen absorption from the atmosphere. The abovementioned factors are often the main reasons for casting defect generation. In this paper the novel CRIMSON aluminium casting method is introduced which has a number of advantages. Instead of gravity filling method, it uses the single shot upcasting method to realize the rapid melting and rapid counter-gravity-filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage is the drastic reduction of energy consumption due to shortened melting and filling time. A simulation software, FLOW-3D, is used to compare this new method with the conventional gravity casting process. A tensile bar case is used as a sample to simulate the filling process

    The improvement of aluminium casting process control by application of the new CRIMSON process

    Get PDF
    All The traditional foundry usually not only uses batch melting where the aluminium alloys are melted and held in a furnace for long time, but also uses the gravity filling method in both Sand Casting Process (SCP) and Investment Casting Process (ICP). In the gravity filling operation, the turbulent behaviour of the liquid metal causes substantial entrainment of the surface oxide films which are subsequently trapped into the liquid and generate micro cracks and casting defects. In this paper a new CRIMSON process is introduced which features instead of gravity filling method, using the single shot up-casting method to realize the rapid melting and rapid filling mould operations which reduce the contact time between the melt and environment thus reducing the possibility of defect generation. Another advantage of the new process is the drastic reduction of energy consumption due to shortened melting and filling time. Two types of casting samples from SCP and ICP were compared with the new process. The commercial software was used to simulate the filling and solidification processes of the casting samples. The results show that the new process has a more improved behaviour during filling a mould and solidification than the two conventional casting processes

    Energy-Efficient UAV Communications in the Presence of Wind: 3D Modeling and Trajectory Design

    Full text link
    The rapid development of unmanned aerial vehicle (UAV) technology provides flexible communication services to terrestrial nodes. Energy efficiency is crucial to the deployment of UAVs, especially rotary-wing UAVs whose propulsion power is sensitive to the wind effect. In this paper, we first derive a three-dimensional (3D) generalised propulsion energy consumption model (GPECM) for rotary-wing UAVs under the consideration of stochastic wind modeling and 3D force analysis. Based on the GPECM, we study a UAV-enabled downlink communication system, where a rotary-wing UAV flies subject to stochastic wind disturbance and provides communication services for ground users (GUs). We aim to maximize the energy efficiency (EE) of the UAV by jointly optimizing the 3D trajectory and user scheduling among the GUs based on the GPECM. We formulate the problem as stochastic optimization, which is difficult to solve due to the lack of real-time wind information. To address this issue, we propose an offline-based online adaptive (OBOA) design with two phases, namely, an offline phase and an online phase. In the offline phase, we average the wind effect on the UAV by leveraging stochastic programming (SP) based on wind statistics; then, in the online phase, we further optimize the instantaneous velocity to adapt the real-time wind. Simulation results show that the optimized trajectories of the UAV in both two phases can better adapt to the wind in changing speed and direction, and achieves a higher EE compared with the windless scheme. In particular, our proposed OBOA design can be applied in the scenario with dramatic wind changes, and makes the UAV adjust its velocity dynamically to achieve a better performance in terms of EE.Comment: 31 pages, 13 figure

    Research Letter Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl pyrrolidone) Chains

    Get PDF
    Quartz crystal microbalance (QCM) was used to investigate the adsorption of acid-oxidized single-walled carbon nanotubes (OxSWNTs) and poly(vinyl pyrrolidone), PVP. It was found for the first time that Ox-SWNTs adsorbed onto the QCM electrode can be effectively replaced by PVP chains in an aqueous solution. This replacement process was also investigated by atomic force miscroscopic (AFM) imaging, which shows good agreement with the QCM measurements. This study provides powerful tools for fundamental investigation of polymer-nanotube interactions and for controlled design/fabrication of functional polymernanotube surfaces for potential applications. Carbon nanotubes have been demonstrated to possess excellent electronic [1], mechanical It is well known that polymer adsorption is a dynamic process, in which adsorbed polymer chains on a particular surface can be desorbed or replaced by other absorbing species that have a greater affinity to the surfac
    • …
    corecore