803 research outputs found

    Production Behavior of Fractured Horizontal Well in Closed Rectangular Shale Gas Reservoirs

    Get PDF
    This paper established a triple porosity physical model in rectangular closed reservoirs to understand the complex fluid flowing mechanism and production behavior of multifractured horizontal wells in shale gas reservoirs, which is more appropriate for practical situation compared with previous ones. According to the seepage theory considering adsorption and desorption process in stable state, the gas production rate of a well producing at constant wellbore pressure was obtained by utilizing the methods of Green’s and source function theory and superposition principle. Meanwhile, the volume of adsorbed gas (GL) and the number of hydraulic fractures (M) as well as permeabilities of matrix system (km) and microfractures (kf) were discussed in this paper as sensitive factors, which have significant influences on the production behavior of the wells. The bigger the value of GL is, the larger the well production rate will be in the later flowing periods, and the differences of production rate with the increasing of M are small, which manifest that there is an optimum M for a given field. Therefore, the study in this paper is of significant importance to understand the dynamic production declining performance in shale gas reservoirs

    Evaluation of Biogas and Solar Energy Coupling on Phase-Change Energy-Storage Heating Systems: Optimization of Supply and Demand Coordination

    Get PDF
    Biogas heating plays a crucial role in the transition to clean energy and the mitigation of agricultural pollution. To address the issue of low biogas production during winter, the implementation of a multi-energy complementary system has become essential for ensuring heating stability. To guarantee the economy, stability, and energy-saving operation of the heating system, this study proposes coupling biogas and solar energy with a phase-change energy-storage heating system. The mathematical model of the heating system was developed, taking an office building in Xilin Hot, Inner Mongolia (43.96000° N, 116.03000° E) as a case study. Additionally, the Sparrow Search Algorithm (SSA) was employed to determine equipment selection and optimize the dynamic operation strategy, considering the minimum cost and the balance between the supply and demand of the building load. The operating economy was evaluated using metrics such as payback period, load ratio, and daily rate of return. The results demonstrate that the multi-energy complementary heating system, with a balanced supply and demand, yields significant economic benefits compared to the central heating system, with a payback period of 4.15 years and a daily return rate of 32.97% under the most unfavorable working conditions. Moreover, the development of a daily optimization strategy holds practical engineering significance, and the optimal scheduling of the multi-energy complementary system, with a balance of supply and demand, is realized

    Primary Disruption of the Memory-Related Subsystems of the Default Mode Network in Alzheimer’s Disease: Resting-State Functional Connectivity MRI Study

    Get PDF
    Background: Recent studies have indicated that the default mode network (DMN) comprises at least three subsystems: The medial temporal lobe (MTL) and dorsal medial prefrontal cortex (DMPFC) subsystems and a core comprising the anterior MPFC (aMPFC) and posterior cingulate cortex (PCC). Additionally, the disruption of the DMN is related to Alzheimer’s disease (AD). However, little is known regarding the changes in these subsystems in AD, a progressive disease characterized by memory impairment. Here, we performed a resting-state functional connectivity (FC) analysis to test our hypothesis that the memory-related MTL subsystem was predominantly disrupted in AD.Method: To reveal specific subsystem changes, we calculated the strength and number of FCS in the DMN intra- and inter-subsystems across individuals and compared the FC of the two groups. To further examine which pairs of brain regional functional connections contributed to the subsystem alterations, correlation coefficients between any two brain regions in the DMN were compared across groups. Additionally, to identify which regions made the strongest contributions to the subsystem changes, we calculated the regional FC strength (FCS), which was compared across groups.Results: For the intra-subsystem, decreased FC number and strength occurred in the MTL subsystem of AD patients but not in the DMPFC subsystem or core. For the inter-subsystems, the AD group showed decreased FCS and number between the MTL subsystem and PCC and a decreased number between the PCC and DMPFC subsystem. Decreased inter-regional FCS were found within the MTL subsystem in AD patients relative to controls: The posterior inferior parietal lobule (pIPL) showed decreased FC with the hippocampal formation (HF), parahippocampal cortex (PHC) and ventral MPFC (vMPFC). Decreased inter-regional FCS of the inter-subsystems were also found in AD patients: The HF and/or PHC showed decreased FC with dMPFC and TPJ, located in the DMPFC subsystem, and with PCC. AD patients also showed decreased FC between the PCC and TLC of the dMPFC subsystem. Furthermore, the HF and PHC in the MTL subsystem showed decreased regional FCS.Conclusion: Decreased intrinsic FC was mainly associated with the MTL subsystem of the AD group, suggesting that the MTL subsystem is predominantly disrupted

    Balanced Boolean Functions with (Almost) Optimal Algebraic Immunity and Very High Nonlinearity

    Get PDF
    In this paper, we present a class of 2k2k-variable balanced Boolean functions and a class of 2k2k-variable 11-resilient Boolean functions for an integer k≥2k\ge 2, which both have the maximal algebraic degree and very high nonlinearity. Based on a newly proposed conjecture by Tu and Deng, it is shown that the proposed balanced Boolean functions have optimal algebraic immunity and the 11-resilient Boolean functions have almost optimal algebraic immunity. Among all the known results of balanced Boolean functions and 11-resilient Boolean functions, our new functions possess the highest nonlinearity. Based on the fact that the conjecture has been verified for all k≤29k\le 29 by computer, at least we have constructed a class of balanced Boolean functions and a class of 11-resilient Boolean functions with the even number of variables ≤58\le 58, which are cryptographically optimal or almost optimal in terms of balancedness, algebraic degree, nonlinearity, and algebraic immunity

    One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation

    Full text link
    Cross-domain recommendation is an important method to improve recommender system performance, especially when observations in target domains are sparse. However, most existing techniques focus on single-target or dual-target cross-domain recommendation (CDR) and are hard to be generalized to CDR with multiple target domains. In addition, the negative transfer problem is prevalent in CDR, where the recommendation performance in a target domain may not always be enhanced by knowledge learned from a source domain, especially when the source domain has sparse data. In this study, we propose CAT-ART, a multi-target CDR method that learns to improve recommendations in all participating domains through representation learning and embedding transfer. Our method consists of two parts: a self-supervised Contrastive AuToencoder (CAT) framework to generate global user embeddings based on information from all participating domains, and an Attention-based Representation Transfer (ART) framework which transfers domain-specific user embeddings from other domains to assist with target domain recommendation. CAT-ART boosts the recommendation performance in any target domain through the combined use of the learned global user representation and knowledge transferred from other domains, in addition to the original user embedding in the target domain. We conducted extensive experiments on a collected real-world CDR dataset spanning 5 domains and involving a million users. Experimental results demonstrate the superiority of the proposed method over a range of prior arts. We further conducted ablation studies to verify the effectiveness of the proposed components. Our collected dataset will be open-sourced to facilitate future research in the field of multi-domain recommender systems and user modeling.Comment: 9 pages, accepted by WSDM 202

    Tenrec: A Large-scale Multipurpose Benchmark Dataset for Recommender Systems

    Full text link
    Existing benchmark datasets for recommender systems (RS) either are created at a small scale or involve very limited forms of user feedback. RS models evaluated on such datasets often lack practical values for large-scale real-world applications. In this paper, we describe Tenrec, a novel and publicly available data collection for RS that records various user feedback from four different recommendation scenarios. To be specific, Tenrec has the following five characteristics: (1) it is large-scale, containing around 5 million users and 140 million interactions; (2) it has not only positive user feedback, but also true negative feedback (vs. one-class recommendation); (3) it contains overlapped users and items across four different scenarios; (4) it contains various types of user positive feedback, in forms of clicks, likes, shares, and follows, etc; (5) it contains additional features beyond the user IDs and item IDs. We verify Tenrec on ten diverse recommendation tasks by running several classical baseline models per task. Tenrec has the potential to become a useful benchmark dataset for a majority of popular recommendation tasks

    Active RIS-assisted secure transmission for cognitive satellite terrestrial networks

    Get PDF
    This correspondence develops a physical-layer security scheme for a cognitive-satellite terrestrial network, where the satellite and base station (BS) share the spectrum resource, and multiple eavesdroppers attempt to intercept the private signal from the BS to the mobile user. Different from the commonly used passive reconfigurable intelligent surface (RIS), the active RIS, whose reflecting elements can control both the amplitude and phase of the incident signal, is deployed to cooperatively enhance the secure transmission from the BS to the mobile user, and suppress the interference imposed to the earth station. We attempt to maximize the achievable secrecy rate subject to the transmit power constraint and the interference threshold. To address the above non-convex problem, we propose an effective alternating optimization scheme to jointly optimize the beamformer and artificial noise at the BS, and the reflecting coefficient at the RIS. Simulation results indicate that the impact of the “double fading” can be effectively relieved by using active RIS, thus leading to an apparently enhanced secrecy performance gain compared to those with the passive RIS and no RIS designs
    • …
    corecore