146 research outputs found

    Top-down effects of filter-feeding fish and bivalves moderate bottom-up effects of nutrients on phytoplankton in subtropical shallow lakes: An outdoor mesocosm study

    Get PDF
    Biomanipulation has been widely used in the ecological restoration of eutrophic lakes for decades. However, biomanipulation is prone to failure if external nutrient loads are not reduced. In order to explore the importance of filter-feeding fish and bivalves on algal control, an outdoor mesocosm experiment was conducted using different nutrient concentrations. Four treatments simulating daily loads of nutrients in Lake Taihu were studied: current, two times, and three times average daily loads of nutrients with both fish (Aristichthys nobilis) and Asian clam (Corbicula fluminea) and as a control current daily loads without fish or bivalves. Results showed that stocking of filter-feeding fish and bivalves (80 g m-3 bighead carp; 200 g cm-2 clams) at two times daily nutrient loads could effectively control water column Chl a concentrations and phytoplankton biomass. At higher nutrient concentrations (TN & GE; 260 & mu;g L-1 d-1; TP & GE; 10 & mu;g L-1 d-1), top-down control of filter-feeding fish and bivalves was less effective and bottom-up effects resulted in significant increases of Chl a concentration. Thus, as phytoplankton biomass in freshwater ecosystems is determined by both the top-down effects of predators and the bottom-up effects of nutrients, external loadings should be controlled when filter-feeding fish and bivalves are used for algal control to ensure the efficacy of biomanipulation.A combination of filter-feeding fish and clams suppressed phytoplankton, which could not be affected by low-level nutrients.Bottom-up effects at high-level nutrients on phytoplankton overcome top-down effects, indicating that nutrient levels should be controlled to optimize the effect of the intervention.imag

    A comparative study of the photocatalytic properties of CuS nanotubes and nanoparticles by hydrothermal method

    Get PDF
    Copper sulfide nanotubes and nanoparticles have been successfully synthesized by a hydrothermal process at 160 °C for 10 h, employing copper chloride (CuCl2·2H2O) and thioacetamide as starting materials, polyethylene glycol 400 as surfactant. The products are characterized by X-ray power diffraction, scanning electron microscopy, UV–vis spectroscopy and fluorescence spectroscopy, respectively. The results show that both CuS nanotubes and nanoparticles belong to the hexagonal phase CuS and the morphologies of the products are greatly influenced by the surfactant, reactant molar concentration and reactant molar ratio. The photocatalytic properties of the CuS nanotubes and nanoparticles have been evaluated via photocatalytic degradation of organic dye and reduction of aqueous Cr (VI) under UV light irradiation. The CuS nanotubes with smooth inside and coarse outside present higher photocatalytic performance than the CuS nanoparticles

    ΔFosB Regulates Gene Expression and Cognitive Dysfunction in a Mouse Model of Alzheimer\u27s Disease.

    Get PDF
    Alzheimer\u27s disease (AD) is characterized by cognitive decline and 5- to 10-fold increased seizure incidence. How seizures contribute to cognitive decline in AD or other disorders is unclear. We show that spontaneous seizures increase expression of ΔFosB, a highly stable Fos-family transcription factor, in the hippocampus of an AD mouse model. ΔFosB suppressed expression of the immediate early gene c-Fos, which is critical for plasticity and cognition, by binding its promoter and triggering histone deacetylation. Acute histone deacetylase (HDAC) inhibition or inhibition of ΔFosB activity restored c-Fos induction and improved cognition in AD mice. Administration of seizure-inducing agents to nontransgenic mice also resulted in ΔFosB-mediated suppression of c-Fos, suggesting that this mechanism is not confined to AD mice. These results explain observations that c-Fos expression increases after acute neuronal activity but decreases with chronic activity. Moreover, these results indicate a general mechanism by which seizures contribute to persistent cognitive deficits, even during seizure-free periods

    Epigenetic suppression of hippocampal calbindin-D28k by ΔFosB drives seizure-related cognitive deficits.

    Get PDF
    The calcium-binding protein calbindin-D28k is critical for hippocampal function and cognition, but its expression is markedly decreased in various neurological disorders associated with epileptiform activity and seizures. In Alzheimer\u27s disease (AD) and epilepsy, both of which are accompanied by recurrent seizures, the severity of cognitive deficits reflects the degree of calbindin reduction in the hippocampal dentate gyrus (DG). However, despite the importance of calbindin in both neuronal physiology and pathology, the regulatory mechanisms that control its expression in the hippocampus are poorly understood. Here we report an epigenetic mechanism through which seizures chronically suppress hippocampal calbindin expression and impair cognition. We demonstrate that ΔFosB, a highly stable transcription factor, is induced in the hippocampus in mouse models of AD and seizures, in which it binds and triggers histone deacetylation at the promoter of the calbindin gene (Calb1) and downregulates Calb1 transcription. Notably, increasing DG calbindin levels, either by direct virus-mediated expression or inhibition of ΔFosB signaling, improves spatial memory in a mouse model of AD. Moreover, levels of ΔFosB and calbindin expression are inversely related in the DG of individuals with temporal lobe epilepsy (TLE) or AD and correlate with performance on the Mini-Mental State Examination (MMSE). We propose that chronic suppression of calbindin by ΔFosB is one mechanism through which intermittent seizures drive persistent cognitive deficits in conditions accompanied by recurrent seizures

    HDAC6 inhibition alleviates acute pulmonary embolism: a possible future therapeutic option

    Get PDF
    Introduction. Acute pulmonary embolism (APE) is a clinical syndrome of pulmonary circulation disorder caused by obstruction of the pulmonary artery or its branches. Histone deacetylase 6 (HDAC6) has been reported to play an important role in lung-related diseases. However, the functional role of HDAC6 in APE remains unclear. Material and methods. Male Sprague Dawley rats were used. The APE model was constructed by inserting an intravenous cannula into the right femoral vein and injecting Sephadex G-50 microspheres (12 mg/kg; 300 μm in diameter). After 1 h, the control and APE rats were intraperitoneally injected with tubastatin A (TubA) (40 mg/kg, an inhibitor of HDAC6) and sampled at 24 h after modeling. H&E staining, arterial blood gas analysis, and wet/dry (W/D) weight ratio were used to evaluate the histopathological changes and pulmonary function in APE rats. ELISA, Western blot, and immunohistochemistry were used to explore the potential mechanism of HDAC6-mediated inflammation in APE. Results. The results indicated that HDAC6 expression was significantly increased in lungs of APE rats. TubA treatment in vivo decreased HDAC6 expression in lung tissues. HDAC6 inhibition alleviated histopathological damage and pulmonary dysfunction, as evidenced by decreased PaO2/FiO2 ratio and W/D weight ratio in APE rats. Furthermore, HDAC6 inhibition alleviated APE-induced inflammatory response. Specifically, APE rats exhibited increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-18, however, this increase was reversed by HDAC6 inhibition. Meanwhile, the activation of the NLRP3 inflammasome was also observed in lungs of APE rats, while HDAC6 inhibition blocked this activation. Mechanically, we demonstrated that HDAC6 inhibition blocked the activation of the protein kinase B (AKT)/extracellular signal-regulated protein kinase (ERK) signaling pathway, a classic pathway promoting inflammation. Conclusions. These findings demonstrate that the inhibition of HDAC6 may alleviate lung dysfunction and pathological injury resulting from APE by blocking the AKT/ERK signaling pathway, providing new theoretical fundamentals for APE therapy
    • …
    corecore