198 research outputs found

    Thermal Entanglement in Ferrimagnetic Chains

    Get PDF
    A formula to evaluate the entanglement in an one-dimensional ferrimagnetic system is derived. Based on the formula, we find that the thermal entanglement in a small size spin-1/2 and spin-s ferrimagnetic chain is rather robust against temperature, and the threshold temperature may be arbitrarily high when s is sufficiently large. This intriguing result answers unambiguously a fundamental question: ``can entanglement and quantum behavior in physical systems survive at arbitrary high temperatures?"Comment: 4 pages, 3 figure

    Operator fidelity susceptibility: an indicator of quantum criticality

    Full text link
    We introduce the operator fidelity and propose to use its susceptibility for characterizing the sensitivity of quantum systems to perturbations. Two typical models are addressed: one is the transverse Ising model exhibiting a quantum phase transition, and the other is the one dimensional Heisenberg spin chain with next-nearest-neighbor interactions, which has the degeneracy. It is revealed that the operator fidelity susceptibility is a good indicator of quantum criticality regardless of the system degeneracy.Comment: Four pages, two figure

    Adiabatic Creation of Atomic Squeezing in Dark States vs. Decoherences

    Full text link
    We study the multipartite correlations of the multi-atom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in details the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.Comment: 11 pages, 13 figure

    Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity

    Full text link
    A new extended Dicke model, which includes atom-atom interactions and a driving classical laser field, is established for a Bose-Einstein condensate inside an ultrahigh-finesse optical cavity. A feasible experimental setup with a strong atom-field coupling is proposed, where most parameters are easily controllable and thus the predicted second-order superradiant-normal phase transition may be detected by measuring the ground-state atomic population. More intriguingly, a novel second-order phase transition from the superradiant phase to the \textquotedblleft Mott" phase is also revealed. In addition, a rich and exotic phase diagram is presented.Comment: 4 pages; figures 1 and 3 are modified; topos are correcte

    Ultra-sustainable Fe 78 Si 9 B 13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light

    Get PDF
    Stability and reusability are important characteristics of advanced catalysts for wastewater treatment. In this work, for the first time, sulfate radicals (SO4') with a high oxidative potential (Eo = 2.5-3.1 V) were successfully activated from persulfate by a Fe78Si9B13 metallic glass. This alloy exhibited a superior surface stability and reusability while activating persulfate as indicated by it being used for 30 times while maintaining an acceptable methylene blue (MB) degradation rate. The produced SiO2 layer on the ribbon surface expanded strongly from the fresh use to the 20th use, providing stable protection of the buried Fe. MB degradation and kinetic study revealed 100% of the dye degradation with a kinetic rate k = 0.640 within 20 min under rational parameter control. The dominant reactive species for dye molecule decomposition in the first 10 min of the reaction was hydroxyl radicals (OH,Eo = 2.7 V) and in the last 10 min was sulfate radicals (SO4'), respectively. Empirical operating variables for dye degradation in this work were under catalyst dosage 0.5 g/L, light irradiation 7.7 µW/cm2, and persulfate concentration 1.0 mmol/L. The amorphous Fe78Si9B13 alloy in this work will open a new gate for wastewater remediation. © 2016 The Author(s)

    Operator Quantum Geometric Tensor and Quantum Phase Transitions

    Full text link
    We extend the quantum geometric tensor from the state space to the operator level,and investigate its properties like the additivity for factorizable models and the splitting of two kinds contributions for the case of stationary reference states. This operator-quantum-geometric tensor (OQGT) is shown to reflect the sensitivity of unitary operations against perturbations of multi parameters. General results for the cases of time evolutions with given stationary reference states are obtained. By this approach, we get exact results for the rotated XY models, and show relations between the OQGT and quantum criticality.Comment: One more reference added. 6 pages,2 figs. Accepted by EP

    Entanglement in spin-one Heisenberg chains

    Full text link
    By using the concept of negativity, we study entanglement in spin-one Heisenberg chains. Both the bilinear chain and the bilinear-biquadratic chain are considered. Due to the SU(2) symmetry, the negativity can be determined by two correlators, which greatly facilitate the study of entanglement properties. Analytical results of negativity are obtained in the bilinear model up to four spins and the two-spin bilinear-biquadratic model, and numerical results of negativity are presented. We determine the threshold temperature before which the thermal state is doomed to be entangled.Comment: 7 pages and 4 figure

    Spin squeezing and pairwise entanglement for symmetric multiqubit states

    Full text link
    We show that spin squeezing implies pairwise entanglement for arbitrary symmetric multiqubit states. If the squeezing parameter is less than or equal to 1, we demonstrate a quantitative relation between the squeezing parameter and the concurrence for the even and odd states. We prove that the even states generated from the initial state with all qubits being spin down, via the one-axis twisting Hamiltonian, are spin squeezed if and only if they are pairwise entangled. For the states generated via the one-axis twisting Hamiltonian with an external transverse field for any number of qubits greater than 1 or via the two-axis counter-twisting Hamiltonian for any even number of qubits, the numerical results suggest that such states are spin squeezed if and only if they are pairwise entangled.Comment: 6 pages. Version 3: Small corrections were mad

    Ancestral Polymorphisms Shape the Adaptive Radiation of Metrosideros across the Hawaiian Islands

    Get PDF
    Some of the most spectacular adaptive radiations begin with founder populations on remote islands. How genetically limited founder populations give rise to the striking phenotypic and ecological diversity characteristic of adaptive radiations is a paradox of evolutionary biology. We conducted an evolutionary genomics analysis of genus Metrosideros, a landscape-dominant, incipient adaptive radiation of woody plants that spans a striking range of phenotypes and environments across the Hawaiian Islands. Using nanopore-sequencing, we created a chromosome-level genome assembly for Metrosideros polymorpha var. incana and analyzed whole-genome sequences of 131 individuals from 11 taxa sampled across the islands. Demographic modeling and population genomics analyses suggested that Hawaiian Metrosideros originated from a single colonization event and subsequently spread across the archipelago following the formation of new islands. The evolutionary history of Hawaiian Metrosideros shows evidence of extensive reticulation associated with significant sharing of ancestral variation between taxa and secondarily with admixture. Taking advantage of the highly contiguous genome assembly, we investigated the genomic architecture underlying the adaptive radiation and discovered that divergent selection drove the formation of differentiation outliers in paired taxa representing early stages of speciation/divergence. Analysis of the evolutionary origins of the outlier single nucleotide polymorphisms (SNPs) showed enrichment for ancestral variations under divergent selection. Our findings suggest that Hawaiian Metrosideros possesses an unexpectedly rich pool of ancestral genetic variation, and the reassortment of these variations has fueled the island adaptive radiation
    corecore