1,746 research outputs found

    Confined one-way mode at magnetic domain wall for broadband high-efficiency one-way waveguide, splitter and bender

    Full text link
    We find the one-way mode can be well-confined at the magnetic domain wall by the photonic bandgap of gyromagnetic bulk material. Utilizing the well-confined one-way mode at the domain wall, we demonstrate the photonic one-way waveguide, splitter and bender can be realized with simple structures, which are predicted to be high-efficiency, broadband, frequency-independent, reflection-free, crosstalk-proof and robustness against disorder. Additionally, we find that the splitter and bender in our proposal can be transformed into each other with magnetic control, which may have great potential applications in all photonic integrated circuit.Comment: Appl. Phys. Lett. 100, 041108 (2012); (4 pages

    Diffusion Noise Feature: Accurate and Fast Generated Image Detection

    Full text link
    Generative models have reached an advanced stage where they can produce remarkably realistic images. However, this remarkable generative capability also introduces the risk of disseminating false or misleading information. Notably, existing image detectors for generated images encounter challenges such as low accuracy and limited generalization. This paper seeks to address this issue by seeking a representation with strong generalization capabilities to enhance the detection of generated images. Our investigation has revealed that real and generated images display distinct latent Gaussian representations when subjected to an inverse diffusion process within a pre-trained diffusion model. Exploiting this disparity, we can amplify subtle artifacts in generated images. Building upon this insight, we introduce a novel image representation known as Diffusion Noise Feature (DNF). DNF is extracted from the estimated noise generated during the inverse diffusion process. A simple classifier, e.g., ResNet50, trained on DNF achieves high accuracy, robustness, and generalization capabilities for detecting generated images (even the corresponding generator is built with datasets/structures that are not seen during the classifier's training). We conducted experiments using four training datasets and five testsets, achieving state-of-the-art detection performance

    Hanle detection for optical clocks

    Get PDF
    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with 423 nm electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. And the potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. This Hanle detection configuration is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.Comment: 5 pages, 6 figure
    • …
    corecore