43 research outputs found

    Thermal Imprint Introduced Crystallization of A Solution Processed Subphthalocyanine Thin Film

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134175/1/admi201600179.pd

    Quantized patterning using nanoimprinted blanks

    Get PDF
    Abstract Quantum lithography (QL) is a revolutionary approach, increasing the throughput and lowering the cost of scanning electron beam lithography (EBL). But it has not been pursued since its inception 17 years ago, due to the lack of a viable method for making the blanks needed. Here we propose and demonstrate a new general viable approach to QL blank fabrication, that is based on (a) nanoimprinting and (b) a new wafer-scale nanoimprint mold fabrication that uses not EBL but a unique combination of interference lithography, self-perfection, multiple nanoimprinting, and other novel nanopatterning. We fabricated QL blanks (a 2D Cr square tile array of 200 nm pitch, 9 nm gap, and sub-10 nm corners, corresponding to a 50 nm node 4× photomask) and demonstrated that QL can greatly relax the requirements for the EBL tool, increase the throughput and reduce the cost of EBL by orders of magnitude, and is scalable to the 22 nm node

    Nano-fabricated plasmonic optical transformer

    Get PDF
    The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section

    An Integrated Plasmo‐Photoelectronic Nanostructure Biosensor Detects an Infection Biomarker Accompanying Cell Death in Neutrophils

    Full text link
    Bacterial infections leading to sepsis are a major cause of deaths in the intensive care unit. Unfortunately, no effective methods are available to capture the early onset of infectious sepsis near the patient with both speed and sensitivity required for timely clinical treatment. To fill the gap, the authors develop a highly miniaturized (2.5 × 2.5 ”m2) plasmo‐photoelectronic nanostructure device that detected citrullinated histone H3 (CitH3), a biomarker released to the blood circulatory system by neutrophils. Rapidly detecting CitH3 with high sensitivity has the great potential to prevent infections from developing life‐threatening septic shock. To this end, the author’s device incorporates structurally engineered arrayed hemispherical gold nanoparticles that are functionalized with high‐affinity antibodies. A nanoplasmonic resonance shift induces a photoconduction increase in a few‐layer molybdenum disulfide (MoS2) channel, and it provides the sensor signal. The device achieves label‐free detection of serum CitH3 with a 5‐log dynamic range from 10−4 to 101 ng mL and a sample‐to‐answer time <20 min. Using this biosensor, the authors longitudinally measure the dynamic CitH3 profiles of individual living mice in a sepsis model at high resolution over 12 hours. The developed biosensor may be poised for future translation to personalized management of systemic bacterial infections.The lack of an appropriate biosensing technology to detect the early onset of bacterial infections has prohibited timely clinical treatment of sepitc shock. This article presents a highly miniaturized plasmo‐photoelectronic device incorporating high‐affinity antibody‐conjugated hemispherical gold nanoparticles and a few‐layer molybdenum disulfide (MoS2) photoconductive channel to detect a blood biomarker released by neutrophils with high speed and sensitivity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152883/1/smll201905611-sup-0001-SuppMat.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152883/2/smll201905611_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152883/3/smll201905611.pd
    corecore