7 research outputs found
Technological Research of a Clean Energy Router Based on Advanced Adiabatic Compressed Air Energy Storage System
As a fundamental infrastructure of energy supply for future society, energy Internet (EI) can achieve clean energy generation, conversion, storage and consumption in a more economic and safer way. This paper demonstrates the technology principle of advanced adiabatic compressed air energy storage system (AA-CAES), as well as analysis of the technical characteristics of AA-CAES. Furthermore, we propose an overall architectural scheme of a clean energy router (CER) based on AA-CAES. The storage and mutual conversion mechanism of wind and solar power, heating, and other clean energy were designed to provide a key technological solution for the coordination and comprehensive utilization of various clean energies for the EI. Therefore, the design of the CER scheme and its efficiency were analyzed based on a thermodynamic simulation model of AA-CAES. Meanwhile, we explored the energy conversion mechanism of the CER and improved its overall efficiency. The CER based on AA-CAES proposed in this paper can provide a reference for efficient comprehensive energy utilization (CEU) (93.6%) in regions with abundant wind and solar energy sources
A Solar–Thermal-Assisted Adiabatic Compressed Air Energy Storage System and Its Efficiency Analysis
Adiabatic compressed air energy storage (A-CAES) is an effective balancing technique for the integration of renewables and peak-shaving due to the large capacity, high efficiency, and low carbon use. Increasing the inlet air temperature of turbine and reducing the compressor power consumption are essential to improving the efficiency of A-CAES. This paper proposes a novel solar–thermal-assisted A-CAES system (ST-CAES), which features a higher inhale temperature of the turbine to improve the system efficiency. Solar–thermal energy, as an external thermal source, can alleviate the inadequate temperature of the thermal energy storage (TES), which is constrained by the temperature of the exhaust air of the compressor. Energy and exergy analyses were performed to identify ST-CAES performance, and the influence of key parameters on efficiency were studied. Furthermore, exergy efficiency and the destruction ratio of each component of ST-CAES were investigated. The results demonstrate that electricity storage efficiency, round-trip efficiency, and exergy efficiency can reach 70.2%, 61%, and 50%, respectively. Therefore, the proposed system has promising prospects in cities with abundant solar resources owing to its high efficiency and the ability to jointly supply multiple energy needs
The Value and Optimal Sizes of Energy Storage Units in Solar-Assist Cogeneration Energy Hubs
Cogeneration is becoming increasingly popular in building and community energy systems with demands on electricity and heat, which is suitable for residential and industrial use in remote areas. This paper considers a stand-alone cogeneration energy hub. The electrical and thermal energies are produced by a combined heat and power (CHP) unit, photovoltaic panels, and a solar thermal collector. Since solar units generate no electricity and heat during the night, energy storage units which shift demands over time can promote the usage of solar energy and reduce the fuel cost of the CHP unit. This paper proposes a method to retrieve the optimal operation cost as an explicit function in the capacity parameters of electric and thermal energy storage units, reflecting the value of energy storage in the cogeneration energy hub. The capacity parameter set is divided into a collection of polyhedrons; on each polyhedron, the optimal value is an affine function in the capacity parameters. Furthermore, the optimal sizes of system components are discussed. The capacity of the CHP unit is determined from a linear program, ensuring supply adequacy; the capacities of solar generation and energy storage units are calculated based on the cost reduction and the budget. Case studies demonstrate the effectiveness of the proposed method