36 research outputs found

    Interactions between curcumin and human salt-induced kinase 3 elucidated from computational tools and experimental methods

    Get PDF
    Natural products are widely used for treating mitochondrial dysfunction-related diseases and cancers. Curcumin, a well-known natural product, can be potentially used to treat cancer. Human salt-induced kinase 3 (SIK3) is one of the target proteins for curcumin. However, the interactions between curcumin and human SIK3 have not yet been investigated in detail. In this study, we studied the binding models for the interactions between curcumin and human SIK3 using computational tools such as homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations. The open activity loop conformation of SIK3 with the ketoenol form of curcumin was the optimal binding model. The I72, V80, A93, Y144, A145, and L195 residues played a key role for curcumin binding with human SIK3. The interactions between curcumin and human SIK3 were also investigated using the kinase assay. Moreover, curcumin exhibited an IC50 (half-maximal inhibitory concentration) value of 131 nM, and it showed significant antiproliferative activities of 9.62 ± 0.33 µM and 72.37 ± 0.37 µM against the MCF-7 and MDA-MB-23 cell lines, respectively. This study provides detailed information on the binding of curcumin with human SIK3 and may facilitate the design of novel salt-inducible kinases inhibitors

    A Bearing Fault Diagnosis Method Based on PAVME and MEDE

    No full text
    When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed

    Application of Generalized Composite Multiscale Lempel–Ziv Complexity in Identifying Wind Turbine Gearbox Faults

    No full text
    Wind turbine gearboxes operate in harsh environments; therefore, the resulting gear vibration signal has characteristics of strong nonlinearity, is non-stationary, and has a low signal-to-noise ratio, which indicates that it is difficult to identify wind turbine gearbox faults effectively by the traditional methods. To solve this problem, this paper proposes a new fault diagnosis method for wind turbine gearboxes based on generalized composite multiscale Lempel–Ziv complexity (GCMLZC). Within the proposed method, an effective technique named multiscale morphological-hat convolution operator (MHCO) is firstly presented to remove the noise interference information of the original gear vibration signal. Then, the GCMLZC of the filtered signal was calculated to extract gear fault features. Finally, the extracted fault features were input into softmax classifier for automatically identifying different health conditions of wind turbine gearboxes. The effectiveness of the proposed method was validated by the experimental and engineering data analysis. The results of the analysis indicate that the proposed method can identify accurately different gear health conditions. Moreover, the identification accuracy of the proposed method is higher than that of traditional multiscale Lempel–Ziv complexity (MLZC) and several representative multiscale entropies (e.g., multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE) and multiscale sample entropy (MSE))

    A Fault Diagnosis Approach for Rolling Bearing Integrated SGMD, IMSDE and Multiclass Relevance Vector Machine

    No full text
    The vibration signal induced by bearing local fault has strong nonstationary and nonlinear property, which indicates that the conventional methods are difficult to recognize bearing fault patterns effectively. Hence, to obtain an efficient diagnosis result, the paper proposes an intelligent fault diagnosis approach for rolling bearing integrated symplectic geometry mode decomposition (SGMD), improved multiscale symbolic dynamic entropy (IMSDE) and multiclass relevance vector machine (MRVM). Firstly, SGMD is employed to decompose the original bearing vibration signal into several symplectic geometry components (SGC), which is aimed at reconstructing the original bearing vibration signal and achieving the purpose of noise reduction. Secondly, the bat algorithm (BA)-based optimized IMSDE is presented to evaluate the complexity of reconstruction signal and extract bearing fault features, which can solve the problems of missing of partial fault information existing in the original multiscale symbolic dynamic entropy (MSDE). Finally, IMSDE-based bearing fault features are fed to MRVM for achieving the identification of bearing fault categories. The validity of the proposed method is verified by the experimental and contrastive analysis. The results show that our approach can precisely identify different fault patterns of rolling bearings. Moreover, our approach can achieve higher recognition accuracy than several existing methods involved in this paper. This study provides a new research idea for improvement of bearing fault identification

    Fault Diagnosis of Rolling-Element Bearing Using Multiscale Pattern Gradient Spectrum Entropy Coupled with Laplacian Score

    No full text
    Feature extraction is recognized as a critical stage in bearing fault diagnosis. Pattern spectrum (PS) and pattern spectrum entropy (PSE) in recent years have been smoothly applied in feature extraction, whereas they easily ignore the partial impulse signatures hidden in bearing vibration data. In this paper, the pattern gradient spectrum (PGS) and pattern gradient spectrum entropy (PGSE) are firstly presented to improve the performance of fault feature extraction of two approaches (PS and PSE). Nonetheless, PSE and PGSE are only able to evaluate dynamic behavior of the time series on a single scale, which implies there is no consideration of feature information at other scales. To address this problem, a novel approach entitled multiscale pattern gradient spectrum entropy (MPGSE) is further implemented to extract fault features across multiple scales, where its key parameters are determined adaptively by grey wolf optimization (GWO). Meanwhile, a Laplacian score- (LS-) based feature selection strategy is employed to choose the sensitive features and establish a new feature set. Finally, the selected new feature set is imported into extreme learning machine (ELM) to identify different health conditions of rolling bearing. Performance of our designed algorithm is tested on two experimental cases. Results confirm the availability of our proposed algorithm in feature extraction and show that our method can recognize effectively different bearing fault categories and severities. More importantly, the designed approach can achieve higher recognition accuracies and provide better stability by comparing with other entropy-based methods involved in this paper

    Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder

    No full text
    Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods

    Bearing Fault Feature Extraction Method Based on Enhanced Differential Product Weighted Morphological Filtering

    No full text
    Aimed at the problem of fault characteristic information bearing vibration signals being easily submerged in some background noise and harmonic interference, a new algorithm named enhanced differential product weighted morphological filtering (EDPWMF) is proposed for bearing fault feature extraction. In this method, an enhanced differential product weighted morphological operator (EDPWO) is first constructed by means of infusing the differential product operation and weighted operation into four basic combination morphological operators. Subsequently, aiming at the disadvantage of the parameter selection of the structuring element (SE) of EDPWO depending on artificial experience, an index named fault feature ratio (FFR) is employed to automatically determine the flat SE length of EDPWO and search for the optimal weighting correlation factors. The fault diagnosis results of simulation signals and experimental bearing fault signals show that the proposed method can effectively extract bearing fault feature information from raw bearing vibration signals containing noise interference. Moreover, the filtering result obtained by the proposed method is better than that of traditional morphological filtering methods (e.g., AVG, STH and EMDF) through comparative analysis. This study provides a reference value for the construction of advanced morphological analysis methods

    Detecting Defects on Solid Wood Panels Based on an Improved SSD Algorithm

    No full text
    Wood is widely used in construction, the home, and art applications all over the world because of its good mechanical properties and aesthetic value. However, because the growth and preservation of wood are greatly affected by the environment, it often contains different types of defects that affect its performance and ornamental value. To solve the issues of high labor costs and low efficiency in the detection of wood defects, we used machine vision and deep learning methods in this work. A color charge-coupled device camera was used to collect the surface images of two types of wood from Akagi and Pinus sylvestris trees. A total of 500 images with a size of 200 × 200 pixels containing wood knots, dead knots, and checking defects were obtained. The transfer learning method was used to apply the single-shot multibox detector (SSD), a target detection algorithm and the DenseNet network was introduced to improve the algorithm. The mean average precision for detecting the three types of defects, live knots, dead knots and checking was 96.1%
    corecore