1,008 research outputs found
Partial Consistency with Sparse Incidental Parameters
Penalized estimation principle is fundamental to high-dimensional problems.
In the literature, it has been extensively and successfully applied to various
models with only structural parameters. As a contrast, in this paper, we apply
this penalization principle to a linear regression model with a
finite-dimensional vector of structural parameters and a high-dimensional
vector of sparse incidental parameters. For the estimators of the structural
parameters, we derive their consistency and asymptotic normality, which reveals
an oracle property. However, the penalized estimators for the incidental
parameters possess only partial selection consistency but not consistency. This
is an interesting partial consistency phenomenon: the structural parameters are
consistently estimated while the incidental ones cannot. For the structural
parameters, also considered is an alternative two-step penalized estimator,
which has fewer possible asymptotic distributions and thus is more suitable for
statistical inferences. We further extend the methods and results to the case
where the dimension of the structural parameter vector diverges with but slower
than the sample size. A data-driven approach for selecting a penalty
regularization parameter is provided. The finite-sample performance of the
penalized estimators for the structural parameters is evaluated by simulations
and a real data set is analyzed
Risks of Large Portfolios
Estimating and assessing the risk of a large portfolio is an important topic
in financial econometrics and risk management. The risk is often estimated by a
substitution of a good estimator of the volatility matrix. However, the
accuracy of such a risk estimator for large portfolios is largely unknown, and
a simple inequality in the previous literature gives an infeasible upper bound
for the estimation error. In addition, numerical studies illustrate that this
upper bound is very crude. In this paper, we propose factor-based risk
estimators under a large amount of assets, and introduce a high-confidence
level upper bound (H-CLUB) to assess the accuracy of the risk estimation. The
H-CLUB is constructed based on three different estimates of the volatility
matrix: sample covariance, approximate factor model with known factors, and
unknown factors (POET, Fan, Liao and Mincheva, 2013). For the first time in the
literature, we derive the limiting distribution of the estimated risks in high
dimensionality. Our numerical results demonstrate that the proposed upper
bounds significantly outperform the traditional crude bounds, and provide
insightful assessment of the estimation of the portfolio risks. In addition,
our simulated results quantify the relative error in the risk estimation, which
is usually negligible using 3-month daily data. Finally, the proposed methods
are applied to an empirical study
DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction
Semi-supervised learning provides an expressive framework for exploiting
unlabeled data when labels are insufficient. Previous semi-supervised learning
methods typically match model predictions of different data-augmented views in
a single-level interaction manner, which highly relies on the quality of
pseudo-labels and results in semi-supervised learning not robust. In this
paper, we propose a novel SSL method called DualMatch, in which the class
prediction jointly invokes feature embedding in a dual-level interaction
manner. DualMatch requires consistent regularizations for data augmentation,
specifically, 1) ensuring that different augmented views are regulated with
consistent class predictions, and 2) ensuring that different data of one class
are regulated with similar feature embeddings. Extensive experiments
demonstrate the effectiveness of DualMatch. In the standard SSL setting, the
proposal achieves 9% error reduction compared with SOTA methods, even in a more
challenging class-imbalanced setting, the proposal can still achieve 6% error
reduction. Code is available at https://github.com/CWangAI/DualMatchComment: 14 pages, 8 figures, Accepted by ECMLPKDD 202
Research on the Impact of Game Users’ Perceived Value on Satisfaction and Loyalty - Based on the Perspectives of Hedonic Value and Utilitarian Value
As Chinese game market growing mature, cultivating loyal game users has become the new goals for game companies. Based on the theory of game users experience, this paper constructs the structural model of customer with the variables of perceived value, customer satisfaction and customer loyalty and studies the relationship between the game users’ hedonic/utilitarian value and customer satisfaction/customer loyalty from the perspective of the game user utilitarian value and hedonic value. The study finds that the game users’ perceived value has a positive effect on customer satisfaction and customer loyalty; while hedonic value has a more significant effect on customer satisfaction than utilitarian value, the latter one has a greater significant effect on customer loyalty than the former one; customer satisfaction has a positive effect on customer loyalty; hedonic value and utilitarian value interact and influence with each other. Implication and recommendation of this research is that enhancing the hedonic and utilitarian value of game users by game companies which is one of the effective ways to improve game users’ satisfaction and loyalty
- …