36,226 research outputs found

    Local electronic structures on the superconducting interface LaAlO3/SrTiO3LaAlO_{3}/SrTiO_{3}

    Full text link
    Motivated by the recent discovery of superconductivity on the heterointerface LaAlO3/SrTiO3LaAlO_{3}/SrTiO_{3}, we theoretically investigate its local electronic structures near an impurity considering the influence of Rashba-type spin-orbit interaction (RSOI) originated in the lack of inversion symmetry. We find that local density of states near an impurity exhibits the in-gap resonance peaks due to the quasiparticle scattering on the Fermi surface with the reversal sign of the pairing gap caused by the mixed singlet and RSOI-induced triplet superconducting state. We also analyze the evolutions of density of states and local density of states with the weight of triplet pairing component determined by the strength of RSOI, which will be widely observed in thin films of superconductors with surface or interface-induced RSOI, or various noncentrosymmetric superconductors in terms of point contact tunneling and scanning tunneling microscopy, and thus reveal an admixture of the spin singlet and RSOI-induced triplet superconducting states.Comment: Phys. Rev. B 81, 144504 (2010)

    Model Hamiltonian for topological Kondo insulator SmB6

    Full text link
    Starting from the kp method in combination with first-principles calculations, we systematically derive the effective Hamiltonians that capture the low energy band structures of recently discovered topological Kondo insulator SmB6. Using these effective Hamiltonians we can obtain both the energy dispersion and the spin texture of the topological surface states, which can be detected by further experiments.Comment: 6 pages, 4 figure

    Quantum anomalous Hall effect and related topological electronic states

    Full text link
    Over a long period of exploration, the successful observation of quantized version of anomalous Hall effect (AHE) in thin film of magnetically-doped topological insulator completed a quantum Hall trio---quantum Hall effect (QHE), quantum spin Hall effect (QSHE), and quantum anomalous Hall effect (QAHE). On the theoretical front, it was understood that intrinsic AHE is related to Berry curvature and U(1) gauge field in momentum space. This understanding established connection between the QAHE and the topological properties of electronic structures characterized by the Chern number. With the time reversal symmetry broken by magnetization, a QAHE system carries dissipationless charge current at edges, similar to the QHE where an external magnetic field is necessary. The QAHE and corresponding Chern insulators are also closely related to other topological electronic states, such as topological insulators and topological semimetals, which have been extensively studied recently and have been known to exist in various compounds. First-principles electronic structure calculations play important roles not only for the understanding of fundamental physics in this field, but also towards the prediction and realization of realistic compounds. In this article, a theoretical review on the Berry phase mechanism and related topological electronic states in terms of various topological invariants will be given with focus on the QAHE and Chern insulators. We will introduce the Wilson loop method and the band inversion mechanism for the selection and design of topological materials, and discuss the predictive power of first-principles calculations. Finally, remaining issues, challenges and possible applications for future investigations in the field will be addressed.Comment: Review Article published in , and update
    corecore