2,927 research outputs found

    Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement

    Get PDF
    Shunting effect of resistance spot welding is evaluated based on the electrode displacement signals. The shunted welds in mild steel with different weld spacing were produced. The results showed that the weld spacing and nugget diameter were polynomial-correlated, and the minimum welding spacing of 20 mm can be derived from the results. Both the peak value and gradient of electrode displacement in the weld stage indicated strong correlations with the nugget diameters of shunted welds. Additional shunt path was found to further aggregate the shunting, suggesting the decline in the values of profile features. Furthermore, it is found that the shunting effect led to the decline of the dynamic resistance curves, which is contradictive to the trends between acceptable-sized and undersized welds claimed based on the single weld study. The paper shows that electrode displacement curves of shunting can be incorporated into existing quality monitoring system.The financial support from the Australian Research Council (Grant No. LP130101001) is fully acknowledged

    Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions

    Full text link
    Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in pppp and peripheral AAAA collisions where the medium effect is negligible. We demonstrate that the medium-induced broadening p2\langle p_\perp^2\rangle and the so-called jet quenching parameter q^\hat q can be extracted from the angular de-correlations observed in AAAA collisions. A global χ2\chi^2 analysis of dihadron and hadron-jet angular correlation data renders the best fit p213 GeV2\langle p_\perp^2 \rangle \sim 13~\textrm{GeV}^2 for a quark jet at RHIC top energy. Further experimental and theoretical efforts along the direction of this work shall significantly advance the quantitative understanding of transverse momentum broadening and help us acquire unprecedented knowledge of jet quenching parameter in relativistic heavy-ion collisions.Comment: 6 pages, 3 figure

    Characteristics of profiles of gamma-ray burst pulses associated with the Doppler effect of fireballs

    Full text link
    In this paper, we derive in a much detail the formula of count rates, in terms of the integral of time, of gamma-ray bursts in the framework of fireballs, where the Doppler effect of the expanding fireball surface is the key factor to be concerned. Effects arising from the limit of the time delay due to the limited regions of the emitting areas in the fireball surface and other factors are investigated. Our analysis shows that the formula of the count rate of fireballs can be expressed as a function of τ\tau which is the observation time scale relative to the dynamical time scale of the fireball. The profile of light curves of fireballs depends only on the relative time scale, entirely independent of the real time scale and the real size of the objects. It displays in detail how a cutoff tail, or a turn over, feature (called a cutoff tail problem) in the decay phase of a light curve can be formed. This feature is a consequence of a hot spot in the fireball surface, moving towards the observer, and was observed in a few cases previously. By performing fits to the count rate light curves of six sample sources, we show how to obtain some physical parameters from the observed profile of the count rate of GRBs. In addition, the analysis reveals that the Doppler effect of fireballs could lead to a power law relationship between the FWHMFWHM of pulses and energy, which were observed previously by many authors.Comment: 38 pages, 10 figures; accepted for publication in ApJ (10 December 2004, v617

    (E)-2-(Cyclo­hexyl­methyl­ene)succinic acid

    Get PDF
    The title compound, C11H16O4, crystallizes with three molecules in the asymmetric unit. The cyclo­hexane ring adopts a chair conformation. Inter­molecular O—H⋯O hydrogen bonds are observed and these help to establish the crystal packing

    Improvements to enhance robustness of third-order scale-independent WENO-Z schemes

    Full text link
    Although there are many improvements to WENO3-Z that target the achievement of optimal order in the occurrence of the first-order critical point (CP1), they mainly address resolution performance, while the robustness of schemes is of less concern and lacks understanding accordingly. In light of our analysis considering the occurrence of critical points within grid intervals, we theoretically prove that it is impossible for a scale-independent scheme that has the stencil of WENO3-Z to fulfill the above order achievement, and current scale-dependent improvements barely fulfill the job when CP1 occurs at the middle of the grid cell. In order to achieve scale-independent improvements, we devise new smoothness indicators that increase the error order from 2 to 4 when CP1 occurs and perform more stably. Meanwhile, we construct a new global smoothness indicator that increases the error order from 4 to 5 similarly, through which new nonlinear weights with regard to WENO3-Z are derived and new scale-independents improvements, namely WENO-ZES2 and -ZES3, are acquired. Through 1D scalar and Euler tests, as well as 2D computations, in comparison with typical scale-dependent improvement, the following performances of the proposed schemes are demonstrated: The schemes can achieve third-order accuracy at CP1 no matter its location in the stencil, indicate high resolution in resolving flow subtleties, and manifest strong robustness in hypersonic simulations (e.g., the accomplishment of computations on hypersonic half-cylinder flow with Mach numbers reaching 16 and 19, respectively, as well as essentially non-oscillatory solutions of inviscid sharp double cone flow at M=9.59), which contrasts the comparative WENO3-Z improvement

    Machine learning study of the relationship between the geometric and entropy discord

    Full text link
    As an important resource to realize quantum information, quantum correlation displays different behaviors, freezing phenomenon and non-localization, which are dissimilar to the entanglement and classical correlation, respectively. In our setup, the ordering of quantum correlation is represented for different quantization methods by considering an open quantum system scenario. The machine learning method (neural network method) is then adopted to train for the construction of a bridge between the R\`{e}nyi discord (α=2\alpha=2) and the geometric discord (Bures distance) for XX form states. Our results clearly demonstrate that the machine learning method is useful for studying the differences and commonalities of different quantizing methods of quantum correlation

    Ilexonin A Promotes Neuronal Proliferation and Regeneration via Activation of the Canonical Wnt Signaling Pathway after Cerebral Ischemia Reperfusion in Rats

    Get PDF
    Aims. Ilexonin A (IA), a component of the Chinese medicine Ilex pubescens, has been shown to be neuroprotective during ischemic injury. However, the specific mechanism underlying this neuroprotective effect remains unclear. Methods. In this study, we employed a combination of immunofluorescence staining, western blotting, RT-PCR, and behavioral tests, to investigate the molecular mechanisms involved in IA regulation of neuronal proliferation and regeneration after cerebral ischemia and reperfusion in rodents. Results. Increases in β-catenin protein and LEF1 mRNA and decreases in GSK3β protein and Axin mRNA observed in IA-treated compared to control rodents implicated the canonical Wnt pathway as a key signaling mechanism activated by IA treatment. Furthermore, rodents in the IA treatment group showed less neurologic impairment and a corresponding increase in the number of Brdu/nestin and Brdu/NeuN double positive neurons in the parenchymal ischemia tissue following middle cerebral artery occlusion compared to matched controls. Conclusion. Altogether, our data indicate that IA can significantly diminish neurological deficits associated with cerebral ischemia reperfusion in rats as a result of increased neuronal survival via modulation of the canonical Wnt pathway
    corecore