1,415 research outputs found

    Path diversity improves the identification of influential spreaders

    Full text link
    Identifying influential spreaders in complex networks is a crucial problem which relates to wide applications. Many methods based on the global information such as kk-shell and PageRank have been applied to rank spreaders. However, most of related previous works overwhelmingly focus on the number of paths for propagation, while whether the paths are diverse enough is usually overlooked. Generally, the spreading ability of a node might not be strong if its propagation depends on one or two paths while the other paths are dead ends. In this Letter, we introduced the concept of path diversity and find that it can largely improve the ranking accuracy. We further propose a local method combining the information of path number and path diversity to identify influential nodes in complex networks. This method is shown to outperform many well-known methods in both undirected and directed networks. Moreover, the efficiency of our method makes it possible to be applied to very large systems.Comment: 6 pages, 6 figure

    Topological Excitation in Skyrme Theory

    Get PDF
    Based on the ϕ\phi-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting, merging and intersection) during the evolution of the monopoles.Comment: 10 pages, 0 figure

    Submodular Load Clustering with Robust Principal Component Analysis

    Full text link
    Traditional load analysis is facing challenges with the new electricity usage patterns due to demand response as well as increasing deployment of distributed generations, including photovoltaics (PV), electric vehicles (EV), and energy storage systems (ESS). At the transmission system, despite of irregular load behaviors at different areas, highly aggregated load shapes still share similar characteristics. Load clustering is to discover such intrinsic patterns and provide useful information to other load applications, such as load forecasting and load modeling. This paper proposes an efficient submodular load clustering method for transmission-level load areas. Robust principal component analysis (R-PCA) firstly decomposes the annual load profiles into low-rank components and sparse components to extract key features. A novel submodular cluster center selection technique is then applied to determine the optimal cluster centers through constructed similarity graph. Following the selection results, load areas are efficiently assigned to different clusters for further load analysis and applications. Numerical results obtained from PJM load demonstrate the effectiveness of the proposed approach.Comment: Accepted by 2019 IEEE PES General Meeting, Atlanta, G

    Self-dual Vortices in the Abelian Chern-Simons Model with Two Complex Scalar Fields

    Full text link
    Making use of ϕ\phi-mapping topological current method, we discuss the self-dual vortices in the Abelian Chern-Simons model with two complex scalar fields. For each scalar field, an exact nontrivial equation with a topological term which is missing in many references is derived analytically. The general angular momentum is obtained. The magnetic flux which relates the two scalar fields is calculated. Furthermore, we investigate the vortex evolution processes, and find that because of the present of the vortex molecule, these evolution processes is more complicated than the vortex evolution processes in the corresponding single scalar field model.Comment: 9 pages, no figure

    Fermions on Thick Branes in the Background of Sine-Gordon Kinks

    Full text link
    A class of thick branes in the background of sine-Gordon kinks with a scalar potential V(ϕ)=p(1+cos2ϕq)V(\phi)=p(1+\cos\frac{2\phi}{q}) was constructed by R. Koley and S. Kar [Classical Quantum Gravity \textbf{22}, 753 (2005)]. In this paper, in the background of the warped geometry, we investigate the issue of localization of spin half fermions on these branes in the presence of two types of scalar-fermion couplings: ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi and ηΨˉsinϕΨ\eta\bar{\Psi}\sin\phi \Psi. By presenting the mass-independent potentials in the corresponding Schr\"{o}dinger equations, we obtain the lowest Kaluza--Klein (KK) modes and a continuous gapless spectrum of KK states with m2>0m^2>0 for both types of couplings. For the Yukawa coupling ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi, the effective potential of the right chiral fermions for positive qq and η\eta is always positive, hence only the effective potential of the left chiral fermions could trap the corresponding zero mode. This is a well-known conclusion which had been discussed extensively in the literature. However, for the coupling ηΨˉsinϕΨ\eta\bar{\Psi}\sin\phi \Psi, the effective potential of the right chiral fermions for positive qq and η\eta is no longer always positive. Although the value of the potential at the location of the brane is still positive, it has a series of wells and barriers on each side, which ensures that the right chiral fermion zero mode could be trapped. Thus we may draw the remarkable conclusion: for positive η\eta and qq, the potentials of both the left and right chiral fermions could trap the corresponding zero modes under certain restrictions.Comment: 22 pages, 21 figures, published version to appear in Phys. Rev.
    corecore