21,977 research outputs found
Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap
We present how to control interactions between solitons, either bright or
dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and
harmonic trap. Our results show that as long as the scattering length is to be
modulated in time via a changing magnetic field near the Feshbach resonance,
and the harmonic trapping frequencies are also modulated in time, exact
solutions of the one-dimensional nonlinear Schr\"{o}dinger equation can be
found in a general closed form, and interactions between two solitons are
modulated in detail in currently experimental conditions. We also propose
experimental protocols to observe the phenomena such as fusion, fission, warp,
oscillation, elastic collision in future experiments.Comment: 7 pages, 7 figure
Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions
Dijet, dihadron, hadron-jet angular correlations have been reckoned as
important probes of the transverse momentum broadening effects in relativistic
nuclear collisions. When a pair of high-energy jets created in hard collisions
traverse the quark-gluon plasma produced in heavy-ion collisions, they become
de-correlated due to the vacuum soft gluon radiation associated with the
Sudakov logarithms and the medium-induced transverse momentum broadening. For
the first time, we employ the systematical resummation formalism and establish
a baseline calculation to describe the dihadron and hadron-jet angular
correlation data in and peripheral collisions where the medium effect
is negligible. We demonstrate that the medium-induced broadening and the so-called jet quenching parameter can be
extracted from the angular de-correlations observed in collisions. A
global analysis of dihadron and hadron-jet angular correlation data
renders the best fit for a
quark jet at RHIC top energy. Further experimental and theoretical efforts
along the direction of this work shall significantly advance the quantitative
understanding of transverse momentum broadening and help us acquire
unprecedented knowledge of jet quenching parameter in relativistic heavy-ion
collisions.Comment: 6 pages, 3 figure
SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection
Vision-based vehicle detection approaches achieve incredible success in
recent years with the development of deep convolutional neural network (CNN).
However, existing CNN based algorithms suffer from the problem that the
convolutional features are scale-sensitive in object detection task but it is
common that traffic images and videos contain vehicles with a large variance of
scales. In this paper, we delve into the source of scale sensitivity, and
reveal two key issues: 1) existing RoI pooling destroys the structure of small
scale objects, 2) the large intra-class distance for a large variance of scales
exceeds the representation capability of a single network. Based on these
findings, we present a scale-insensitive convolutional neural network (SINet)
for fast detecting vehicles with a large variance of scales. First, we present
a context-aware RoI pooling to maintain the contextual information and original
structure of small scale objects. Second, we present a multi-branch decision
network to minimize the intra-class distance of features. These lightweight
techniques bring zero extra time complexity but prominent detection accuracy
improvement. The proposed techniques can be equipped with any deep network
architectures and keep them trained end-to-end. Our SINet achieves
state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on
the KITTI benchmark and a new highway dataset, which contains a large variance
of scales and extremely small objects.Comment: Accepted by IEEE Transactions on Intelligent Transportation Systems
(T-ITS
Hemiballism-hemichorea induced by ketotic hyperglycemia: case report with PET study and review of the literature
Hemiballism-hemichorea (HB-HC) is commonly used to describe the basal ganglion dysfunction in non-ketotic hyperglycemic elderly patients. Here we report two elderly female patients with acute onset of involuntary movements induced by hyperglycemia with positive urine ketones. We described the computed tomography and magnetic resonance imaging findings in these two patients, which is similar to that of non-ketotic hyperglycemic HB-HC patients. FDG-PET was performed and the glucose metabolism in the corresponding lesion in these two patients was contradictory with each other. We tried to clarify the underlying mechanisms of HB-HC and explain the contradictory neuroradiological findings in FDG-PET as being performed at different clinical stages
- …
