16,690 research outputs found

    Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study

    Get PDF
    Using first-principles calculations within density functional theory, we investigate the intrinsic spin Hall effect in monolayers of group-VI transition-metal dichalcogenides MX2 (M = Mo, W and X = S, Se). MX2 monolayers are direct band-gap semiconductors with two degenerate valleys located at the corners of the hexagonal Brillouin zone. Because of the inversion symmetry breaking and the strong spin-orbit coupling, charge carriers in opposite valleys carry opposite Berry curvature and spin moment, giving rise to both a valley- and a spin-Hall effect. The intrinsic spin Hall conductivity (ISHC) in p-doped samples is found to be much larger than the ISHC in n-doped samples due to the large spin-splitting at the valence band maximum. We also show that the ISHC in inversion-symmetric bulk dichalcogenides is an order of magnitude smaller compared to monolayers. Our result demonstrates monolayer dichalcogenides as an ideal platform for the integration of valleytronics and spintronics.Comment: published version (7 pages, 6 figures

    PEDF in Diabetic Retinopathy: A Protective Effect of Oxidative Stress

    Get PDF
    Diabetic retinopathy (DR) is a major cause of blindness in working age adults, and oxidative stress plays a vital role in the pathogenesis of DR. Pigment-epithelium-derived factor (PEDF), a multifunctional protein, has shown to inhibit the development of DR by accumulating evidence. This paper highlights the current understanding of probable mechanism about how PEDF blocks the deterioration of DR through its antioxidative properties and application prospects of PEDF as a novel therapeutic target in DR. Gene therapy of PEDF is becoming more and more acceptable and will widely be applied to the actual treatment in the near future

    Ganoderma lucidum and Professor Zhi-Bin Lin

    Get PDF
    http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000209177700050&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Pharmacology & PharmacySCI(E)1EDITORIAL MATERIALnull

    General stationary charged black holes as charged particle accelerators

    Full text link
    We study the possibility of getting infinite energy in the center of mass frame of colliding charged particles in a general stationary charged black hole. For black holes with two-fold degenerate horizon, it is found that arbitrary high center-of-mass energy can be attained, provided that one of the particle has critical angular momentum or critical charge, and the remained parameters of particles and black holes satisfy certain restriction. For black holes with multiple-fold degenerate event horizons, the restriction is released. For non-degenerate black holes, the ultra-high center-of-mass is possible to be reached by invoking the multiple scattering mechanism. We obtain a condition for the existence of innermost stable circular orbit with critical angular momentum or charge on any-fold degenerate horizons, which is essential to get ultra-high center-of-mass energy without fine-tuning problem. We also discuss the proper time spending by the particle to reach the horizon and the duality between frame dragging effect and electromagnetic interaction. Some of these general results are applied to braneworld small black holes.Comment: 23 pages, no figures, revised version accepted for publication in Phys. Rev.
    corecore