4,097 research outputs found

    Itinerant quantum critical point with frustration and non-Fermi-liquid

    Get PDF
    Employing the self-learning quantum Monte Carlo algorithm, we investigate the frustrated transverse-field triangle-lattice Ising model coupled to a Fermi surface. Without fermions, the spin degrees of freedom undergoes a second-order quantum phase transition between paramagnetic and clock-ordered phases. This quantum critical point (QCP) has an emergent U(1) symmetry and thus belongs to the (2+1)D XY universality class. In the presence of fermions, spin fluctuations introduce effective interactions among fermions and distort the bare Fermi surface towards an interacting one with hot spots and Fermi pockets. Near the QCP, non-Fermi-liquid behavior are observed at the hot spots, and the QCP is rendered into a different universality with Hertz-Millis type exponents. The detailed properties of this QCP and possibly related experimental systems are also discussed.Comment: 9 pages, 8 figure

    Competing pairing channels in the doped honeycomb lattice Hubbard model

    Full text link
    Proposals for superconductivity emerging from correlated electrons in the doped Hubbard model on the honeycomb lattice range from chiral d+idd+id singlet to p+ipp+ip triplet pairing, depending on the considered range of doping and interaction strength, as well as the approach used to analyze the pairing instabilities. Here, we consider these scenarios using large-scale dynamic cluster approximation (DCA) calculations to examine the evolution in the leading pairing symmetry from weak to intermediate coupling strength. These calculations focus on doping levels around the van Hove singularity (VHS) and are performed using DCA simulations with an interaction-expansion continuous-time quantum Monte Carlo cluster solver. We calculated explicitly the temperature dependence of different uniform superconducting pairing susceptibilities and found a consistent picture emerging upon gradually increasing the cluster size: while at weak coupling the d+idd+id singlet pairing dominates close to the VHS filling, an enhanced tendency towards pp-wave triplet pairing upon further increasing the interaction strength is observed. The relevance of these systematic results for existing proposals and ongoing pursuits of odd-parity topological superconductivity are also discussed.Comment: 7 pages, 5 figure

    Age Problem in Lemaitre-Tolman-Bondi Void Models

    Full text link
    As is well known, one can explain the current cosmic acceleration by considering an inhomogeneous and/or anisotropic universe (which violates the cosmological principle), without invoking dark energy or modified gravity. The well-known one of this kind of models is the so-called Lema\^{\i}tre-Tolman-Bondi (LTB) void model, in which the universe is spherically symmetric and radially inhomogeneous, and we are living in a locally underdense void centered nearby our location. In the present work, we test various LTB void models with some old high redshift objects (OHROs). Obviously, the universe cannot be younger than its constituents. We find that an unusually large r0r_0 (characterizing the size of the void) is required to accommodate these OHROs in LTB void models. There is a serious tension between this unusually large r0r_0 and the much smaller r0r_0 inferred from other observations (e.g. SNIa, CMB and so on). However, if we instead consider the lowest limit 1.7\,Gyr for the quasar APM 08279+5255 at redshift z=3.91z=3.91, this tension could be greatly alleviated.Comment: 17 pages, 9 figures, revtex4; v2: discussions added, Phys. Lett. B in press; v3: published versio

    [2,2′-Dihy­droxy-N 2,N 2′-(3-hy­droxy­imino­pentane-2,4-di­yl)dibenzo­hydra­zid­ato]copper(II)

    Get PDF
    The CuII atom in the title complex, [Cu(C19H17N5O5)], is coordinated by two N atoms and two O atoms of one 2,2′-dihy­droxy-N 2,N 2’-(3-hy­droxy­imino­pentane-2,4-di­yl)dibenzo­hydrazidate ligand, exhibiting a distorted square-planar geometry. The dihedral angle between the two benzene rings in the oxime hydrazone is 7.62 (15)°. The molecular configuration is stabilized by intramolecular O—H⋯N hydrogen bonds. Pairs of centrosymmetrically related molecules are linked into dimers by two inter­molecular C—H⋯O hydrogen bonds. Each dimer is further connected to four neighboring dimers via four O—H⋯O hydrogen bonds, forming an extended two-dimensional structure. The oxime O atom is disordered over two orientations in a 2:1 ratio
    • …
    corecore