21,929 research outputs found

    Indistinguishability of Warm Dark Matter, Modified Gravity, and Coupled Cold Dark Matter

    Full text link
    The current accelerated expansion of our universe could be due to an unknown energy component with negative pressure (dark energy) or a modification to general relativity (modified gravity). On the other hand, recently warm dark matter (WDM) remarkably rose as an alternative of cold dark matter (CDM). Obviously, it is of interest to distinguish these different types of models. In fact, many attempts have been made in the literature. However, in the present work, we show that WDM, modified gravity and coupled CDM form a trinity, namely, they are indistinguishable by using the cosmological observations of both cosmic expansion history and growth history. Therefore, to break this degeneracy, the other complementary probes beyond the ones of cosmic expansion history and growth history are required.Comment: 13 pages, 4 figures, revtex4; v2: discussions added, Phys. Rev. D in press; v3: published versio

    Anatomy of BsPVB_s \to PV decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

    Full text link
    In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bˉs0PV\bar{B}^0_s \to PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide 40%\sim 40\% enhancement to the LO PQCD predictions for B(Bˉs0K0Kˉ0){\cal B}(\bar{B}_s^0 \to K^0 \bar{K}^{*0}) and B(Bˉs0K±K) {\cal B}(\bar{B}_s^0 \to K^{\pm}K^{*\mp}), or a 37%\sim 37\% reduction to \calb(\bar{B}_s^0 \to \pi^{-} K^{*+}), and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements, (b) the total effects on the PQCD predictions for the relevant BPB\to P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% 10\% enhancement respect to the leading order result, (c) for the "tree" dominated decay Bˉs0K+ρ\bar B_s^0\to K^+ \rho^- and the "color-suppressed-tree" decay Bˉs0π0K0\bar B_s^0\to \pi^0 K^{*0}, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C{\cal A}_{T,C} and AP{\cal A}_P: constructive for the first decay but destructive for the second one, and (d) for \bar{B}_s^0 \to V(\eta, \etar) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude \cala(V\eta_q) and \cala(V\eta_s) due to the \eta-\etar mixing.Comment: 18 pages, 2 figures, 3 tables. Some modifications of the text. Several new references are adde
    corecore