8,391 research outputs found

    The association of XRCC1 gene single nucleotide polymorphisms with response to neoadjuvant chemotherapy in locally advanced cervical carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Platinum-based neoadjuvant chemotherapy (NAC) is new therapeutic strategy for locally advanced cervical carcinoma, but the variables used to predict NAC response are still infrequently reported. The aim of our study was to investigate the association between <it>XRCC1 </it>gene single nucleotide polymorphisms (SNPs) and NAC response.</p> <p>Methods</p> <p>Seventy patients with locally advanced cervical carcinoma who underwent NAC were collected. SNPs of <it>XRCC1 </it>(at codon 194 and 399) and XRCC1 protein expression were detected. The association of <it>XRCC1 </it>gene SNPs and protein expression with NAC response were analyzed.</p> <p>Results</p> <p>Response to NAC was not statistically significant in three genotypes, Arg/Arg, Arg/Trp, Trp/Trp of <it>XRCC1 </it>at codon 194(X<sup>2 </sup>= 1.243, P = 0.07), while responses were significantly different in genotypes Arg/Arg, Arg/Gln, Gln/Gln of <it>XRCC1 </it>at codon 399 (X<sup>2 </sup>= 2.283, P = 0.020). The risk of failure to chemotherapy in the patients with a Gln allele(Arg/Gln+Gln/Gln) was significantly greater than that with Arg/Arg(OR = 3.254, 95%CI 1.708 ~ 14.951). The expression level of XRCC1 protein was significantly associated with response to NAC. Moreover, the genotype with the Gln allele(Arg/Gln+Gln/Gln) at codon 399, but not codon at 194, presented a significantly higher level of XRCC1 protein expression than that with Arg/Arg genotype (F = 2.699, p = 0.009).</p> <p>Conclusion</p> <p>SNP of <it>XRCC1 </it>gene at codon 399 influences the response of cervical carcinoma to platinum-based NAC. This is probably due to changes in expression of XRCC1 protein, affecting response to chemotherapy.</p

    IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models

    Full text link
    Recent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompt as it often involves complex prompt engineering. An alternative to text prompt is image prompt, as the saying goes: "an image is worth a thousand words". Although existing methods of direct fine-tuning from pretrained models are effective, they require large computing resources and are not compatible with other base models, text prompt, and structural controls. In this paper, we present IP-Adapter, an effective and lightweight adapter to achieve image prompt capability for the pretrained text-to-image diffusion models. The key design of our IP-Adapter is decoupled cross-attention mechanism that separates cross-attention layers for text features and image features. Despite the simplicity of our method, an IP-Adapter with only 22M parameters can achieve comparable or even better performance to a fully fine-tuned image prompt model. As we freeze the pretrained diffusion model, the proposed IP-Adapter can be generalized not only to other custom models fine-tuned from the same base model, but also to controllable generation using existing controllable tools. With the benefit of the decoupled cross-attention strategy, the image prompt can also work well with the text prompt to achieve multimodal image generation. The project page is available at \url{https://ip-adapter.github.io}

    Ultrafast pump-probe spectroscopic signatures of superconducting and pseudogap phases in YBa2Cu3O7-{\delta} films

    Full text link
    Femtosecond pump-probe spectroscopy is applied to identify transient optical signatures of phase transitions in optimally doped YBa2Cu3O7-{\delta} films. To elucidate the dynamics of superconducting and pseudogap phases, the slow thermal component is removed from the time-domain traces of photo-induced reflectivity in a high-flux regime with low frequency pulse rate. The rescaled data exhibit distinct signatures of the phase separation with abrupt changes at the onsets of TSC and TPG in excellent agreement with transport data. Compared to the superconducting phase, the response of the pseudogap phase is characterized by the strongly reduced reflectivity change accompanied by a faster recovery time.Comment: 14 pages, 3 figure

    Detaching and Boosting: Dual Engine for Scale-Invariant Self-Supervised Monocular Depth Estimation

    Full text link
    Monocular depth estimation (MDE) in the self-supervised scenario has emerged as a promising method as it refrains from the requirement of ground truth depth. Despite continuous efforts, MDE is still sensitive to scale changes especially when all the training samples are from one single camera. Meanwhile, it deteriorates further since camera movement results in heavy coupling between the predicted depth and the scale change. In this paper, we present a scale-invariant approach for self-supervised MDE, in which scale-sensitive features (SSFs) are detached away while scale-invariant features (SIFs) are boosted further. To be specific, a simple but effective data augmentation by imitating the camera zooming process is proposed to detach SSFs, making the model robust to scale changes. Besides, a dynamic cross-attention module is designed to boost SIFs by fusing multi-scale cross-attention features adaptively. Extensive experiments on the KITTI dataset demonstrate that the detaching and boosting strategies are mutually complementary in MDE and our approach achieves new State-of-The-Art performance against existing works from 0.097 to 0.090 w.r.t absolute relative error. The code will be made public soon.Comment: Accepted by IEEE Robotics and Automation Letters (RAL
    corecore