2,560 research outputs found

    A meta-analysis of efficacy and safety of doripenem for treating bacterial infections

    Get PDF
    AbstractObjectiveThe aim of this article is to compare the efficacy and safety of doripenem for bacterial infections.MethodsWe included six randomized clinical trials identified from PubMed and Embase up to July 31, 2014. The included trials compared efficacy and safety of doripenem for complicated intra-abdominal infections, complicated urinary tract infection, nosocomial pneumonia, and acute biliary tract infection. The meta-analysis was carried on by the statistical software of Review Manager, version 5.2.ResultsCompared with empirical antimicrobial agents on overall treatment efficacy, doripenem was associated with similar clinical and microbiological treatment success rates (for the clinical evaluable population, odds ratio [OR]=1.26, 95% confidence interval [CI] 0.93–1.69, p=0.13; for clinical modified intent-to-treatment population, OR=0.88, 95% CI 0.55–1.41, p=0.60; for microbiology evaluable population, OR=1.16, 95% CI 0.90–1.50, p=0.26; for microbiological modified intent-to-treatment (m-mITT), OR=0.98, 95% CI 0.81–1.20, p=0.87). We compared incidence of adverse events and all-cause mortality to analyze treatment safety. The outcomes suggested that doripenem was similar to comparators in terms of incidence of adverse events and all-cause mortality on modified intent-to-treatment population (for incidence of AEs, OR=1.10, 95% CI 0.90–1.35, p=0.33; for all-cause mortality, OR=1.08, 95% CI 0.77–1.51, p=0.67). In nosocomial pneumonia and ventilator-associated pneumonia treatment, doripenem was not inferior to other antibacterial agents in terms of efficacy and safety.ConclusionFrom this meta-analysis, we can conclude that doripenem is as valuable and well-tolerated than empirical antimicrobial agents for complicated intra-abdominal infections, complicated urinary tract infection, acute biliary tract infection and nosocomial pneumonia treatment

    A Study of Fermi-LAT GeV gamma-ray Emission towards the Magnetar-harboring Supernova Remnant Kesteven 73 and Its Molecular Environment

    Full text link
    We report our independent GeV gamma-ray study of the young shell-type supernova remnant (SNR) Kes 73 which harbors a central magnetar, and CO-line millimeter observations toward the SNR. Using 7.6 years of Fermi-LAT observation data, we detected an extended gamma-ray source ("source A") with the centroid on the west of the SNR, with a significance of 21.6 sigma in 0.1-300 GeV and an error circle of 5.4 arcminute in angular radius. The gamma-ray spectrum cannot be reproduced by a pure leptonic emission or a pure emission from the magnetar, and thus a hadronic emission component is needed. The CO-line observations reveal a molecular cloud (MC) at V_LSR~90 km/s, which demonstrates morphological correspondence with the western boundary of the SNR brightened in multiwavelength. The 12CO (J=2-1)/12CO (J=1-0) ratio in the left (blue) wing 85-88 km/s is prominently elevated to ~1.1 along the northwestern boundary, providing kinematic evidence of the SNR-MC interaction. This SNR-MC association yields a kinematic distance 9 kpc to Kes 73. The MC is shown to be capable of accounting for the hadronic gamma-ray emission component. The gamma-ray spectrum can be interpreted with a pure hadronic emission or a magnetar+hadronic hybrid emission. In the case of pure hadronic emission, the spectral index of the protons is 2.4, very similar to that of the radio-emitting electrons, essentially consistent with the diffusive shock acceleration theory. In the case of magnetar+hadronic hybrid emission, a magnetic field decay rate >= 10^36 erg/s is needed to power the magnetar's curvature radiation.Comment: 7 figures, published in Ap
    • …
    corecore