16,520 research outputs found

    Compressive Privacy for a Linear Dynamical System

    Full text link
    We consider a linear dynamical system in which the state vector consists of both public and private states. One or more sensors make measurements of the state vector and sends information to a fusion center, which performs the final state estimation. To achieve an optimal tradeoff between the utility of estimating the public states and protection of the private states, the measurements at each time step are linearly compressed into a lower dimensional space. Under the centralized setting where all measurements are collected by a single sensor, we propose an optimization problem and an algorithm to find the best compression matrix. Under the decentralized setting where measurements are made separately at multiple sensors, each sensor optimizes its own local compression matrix. We propose methods to separate the overall optimization problem into multiple sub-problems that can be solved locally at each sensor. We consider the cases where there is no message exchange between the sensors; and where each sensor takes turns to transmit messages to the other sensors. Simulations and empirical experiments demonstrate the efficiency of our proposed approach in allowing the fusion center to estimate the public states with good accuracy while preventing it from estimating the private states accurately

    Tensor stability in Born-Infeld determinantal gravity

    Full text link
    We consider the transverse-traceless tensor perturbation of a spatial flat homogeneous and isotropic spacetime in Born-Infeld determinantal gravity, and investigate the evolution of the tensor mode for two solutions in the early universe. For the first solution where the initial singularity is replaced by a regular geometric de Sitter inflation of infinite duration, the evolution of the tensor mode is stable for the parameter spaces α<1\alpha<-1, ω1/3\omega\geq-1/3 and α=1\alpha=-1, ω>0\omega>0. For the second solution where the initial singularity is replaced by a primordial brusque bounce, which suffers a sudden singularity at the bouncing point, the evolution of the tensor mode is stable for all regions of the parameter space. Our calculation suggests that the tensor evolution can hold stability in large parameter spaces, which is a remarkable property of Born-Infeld determinantal gravity. We also constrain the theoretical parameter λ1038m2|\lambda|\geq 10^{-38} \text{m}^{-2} by resorting to the current bound on the speed of the gravitational waves.Comment: 14 pages, added a general discussion on the tensor stability in Sec. 3, and added Sec. 5 on the parameter constraint, published versio

    Microbial community pattern detection in human body habitats via ensemble clustering framework

    Full text link
    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural patterns. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.Comment: BMC Systems Biology 201
    corecore