982 research outputs found

    Common polymorphisms of the hOGG1, APE1 and XRCC1 genes correlate with the susceptibility and clinicopathological features of primary angle-closure glaucoma

    Get PDF
    The present case study aims to elucidate the correlation between the human 8-hydroxyguanineglycosylase (hOGG1), APE1 and X-ray repair cross-complementing gene 1 (XRCC1) gene polymorphisms to the susceptibility and clinicopathological features of primary angle closure glaucoma (PACG) in a Chinese Han population. Blood samples were obtained from 258 PACG patients (case group) and 272 healthy volunteers (control group). PCR with sequence-specific primer (PCR-SSP) was used to determine the allele frequencies and genotype distributions of the hOGG1, APE1 and XRCC1 genes. The risk factors of PACG were determined using logistic regression analysis. The results indicated that hOGG1 Ser326Cys, APE1 Asp148Glu and XRCC1 Arg399Gln polymorphisms were correlated with the risk of PACG. Furthermore, there were thicker corneas, higher intraocular pressure (IOP) and a shorter axial length in patients carrying the mutant genotypes of hOGG1 Ser326Cys (Ser/Cys + Cys/Cys), APE1 Asp148Glu (Asp/Glu + Glu/Glu) and XRCC1 Arg399Gln (Arg/Gln + Glu/Glu) than those carrying the corresponding wild-type genotypes. According to the logistic regression analysis, Asp148Glu and Arg399Gln polymorphisms, a short axial length and high IOP are major risk factors for PACG. These findings reveal that hOGG1 Ser326Cys, APE1 Asp148Glu and XRCC1 Arg399Gln polymorphisms are correlated with the risk and clinicopathological features of PACG in a Chinese Han population

    Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation

    Get PDF
    Objective: Rheumatoid arthritis (RA) is associated with chronic inflammation. The suppression of inflammation is key to the treatment of RA. Glucocorticoids (GCs) are classical anti-inflammatory drugs with several disadvantages such as poor water solubility and low specificity in the body. These disadvantages are the reasons for the quick elimination and side effects of GCs in vivo. Micelles are ideal carriers for GCs delivery to inflamed synovium. We set out to improve the targeting and pharmacokinetic profiles of GCs by preparing a targeting micelle system. Methods: In this study, natural chlosterol (CC) and folic acid (FA) were used to fabricate polysialic acid (PSA) micelles for the targeted delivery of Dexamethasone (Dex). The biodistribution and therapeutic efficacy of the resulting micelles were evaluated in vitro and in vivo. Results: PSA-CC and FA-PSA-CC micelles showed a size below 100 nm and a moderate negative charge. PSA-CC and FA-PSA-CC micelles could also enhance the intracellular uptake of Dex and the suppression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in vitro and in vivo. Arthritis mice showed reduced paw thickness and clinical arthritis index using PSA-CC and FA-PSA-CC micelle treatment. Micellized Dex demonstrated a 4 ∼ 5 fold longer elimination half-life and a 2 ∼ 3 folds higher bioavailability than commercial Dex injection. FA modification significantly improved the anti-inflammatory efficacy of PSA-CC micelles. Conclusion: FA-PSA-CC micelles demonstrated significant advantages in terms of the suppression of inflammation and the treatment of inflammatory arthritis. These reliable and stable micelles possess a high potential to be transferred for clinical use

    Common polymorphisms of the hOGG1, APE1 and XRCC1 genes correlate with the susceptibility and clinicopathological features of primary angle-closure glaucoma Running title: hOGG1, APE1 and XRCC1 genes in PACG patients

    Get PDF
    Synopsis This case study aims to elucidate the correlation between the hOGG1, APE1 and XRCC1 gene polymorphisms to the susceptibility and clinicopathological features of primary angle-closure glaucoma (PACG) in a Chinese Han population. Blood samples were obtained from 258 PACG patients (case group) and 272 healthy volunteers (control group). Polymerase chain reaction with sequence specific primer (PCR-SSP) was used to determine the allele frequencies and genotype distributions of the hOGG1, APE1 and XRCC1 genes. The risk factors of PACG were determined using logistic regression analysis. The results indicated that hOGG1 Ser326Cys, APE1 Asp148Glu and XRCC1 Arg399Gln polymorphisms are correlated with the risk of PACG. Furthermore, there were thicker corneas, higher intraocular pressure (IOP) and a shorter axial length in patients carrying the mutant genotypes of hOGG1 Ser326Cys (Ser/Cys + Cys/Cys), APE1 Asp148Glu (Asp/Glu + Glu/Glu) and XRCC1 Arg399Gln (Arg/Gln + Glu/Glu) than those carrying the corresponding wild-type genotypes. According to the logistic regression analysis, Asp148Glu and Arg399Gln polymorphisms, a short axial length and high IOP are major risk factors of PACG. These findings reveal that hOGG1 Ser326Cys, APE1 Asp148Glu and XRCC1 Arg399Gln polymorphisms are correlated with the risk and clinicopathological features of PACG in a Chinese Han population

    Artesunate potentiates antibiotics by inactivating heme-harbouring bacterial nitric oxide synthase and catalase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A current challenge of coping with bacterial infection is that bacterial pathogens are becoming less susceptible to or more tolerant of commonly used antibiotics. It is urgent to work out a practical solution to combat the multidrug resistant bacterial pathogens.</p> <p>Findings</p> <p>Oxidative stress-acclimatized bacteria thrive in rifampicin by generating antibiotic-detoxifying nitric oxide (NO), which can be repressed by artesunate or an inhibitor of nitric oxide synthase (NOS). Suppressed bacterial proliferation correlates with mitigated NO production upon the combined treatment of bacteria by artesunate with antibiotics. Detection of the heme-artesunate conjugate and accordingly declined activities of heme-harbouring bacterial NOS and catalase indicates that artesunate renders bacteria susceptible to antibiotics by alkylating the prosthetic heme group of hemo-enzymes.</p> <p>Conclusions</p> <p>By compromising NO-mediated protection from antibiotics and triggering harmful hydrogen peroxide burst, artesunate may serve as a promising antibiotic synergist for killing the multidrug resistant pathogenic bacteria.</p

    The progress of pulmonary artery denervation

    Get PDF
    Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary arterial pressure and pulmonary arterioles remodeling. Some studies have discovered the relationship between sympathetic nerves (SNs) and pathogenesis of PAH. This review is aimed to illustrate the location and components of SNs in the pulmonary artery, along with different methods and effects of pulmonary artery denervation (PADN). Studies have shown that the SNs distributed mainly around the main pulmonary artery (MPA) and pulmonary artery (PA) bifurcation. And the SNs could be destroyed by three ways: the chemical way, the surgical way and the catheter-based way. PADN can significantly decrease pulmonary arterial pressure rapidly, improve hemodynamic varieties, and then palliate PAH. PADN has been recognized as a prospective and effective therapy for PAH patients, especially for those with medication-refractory PAH. However, further enlarged clinical studies are needed to confirm accurate distribution of SNs in the pulmonary artery and the efficacy of PADN

    Bioinformatic and functional characterization of cyclic-di-GMP metabolic proteins in Vibrio alginolyticus unveils key diguanylate cyclases controlling multiple biofilm-associated phenotypes

    Get PDF
    The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus

    Sex-specific association of rs16996148 SNP in the NCAN/CILP2/PBX4 and serum lipid levels in the Mulao and Han populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association of rs16996148 single nucleotide polymorphism (SNP) in <it>NCAN/CILP2/PBX4 </it>and serum lipid levels is inconsistent. Furthermore, little is known about the association of rs16996148 SNP and serum lipid levels in the Chinese population. We therefore aimed to detect the association of rs16996148 SNP and several environmental factors with serum lipid levels in the Guangxi Mulao and Han populations.</p> <p>Method</p> <p>A total of 712 subjects of Mulao nationality and 736 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the rs16996148 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing.</p> <p>Results</p> <p>The levels of apolipoprotein (Apo) B were higher in Mulao than in Han (<it>P </it>< 0.001). The frequencies of G and T alleles were 87.2% and 12.8% in Mulao, and 89.9% and 10.1% in Han (<it>P <</it>0.05); respectively. The frequencies of GG, GT and TT genotypes were 76.0%, 22.5% and 1.5% in Mulao, and 81.2%, 17.4% and 1.4% in Han (<it>P <</it>0.05); respectively. There were no significant differences in the genotypic and allelic frequencies between males and females in both ethnic groups. The levels of HDL-C, ApoAI, and the ratio of ApoAI to ApoB in Mulao were different between the GG and GT/TT genotypes in males but not in females (<it>P </it>< 0.01 for all), the subjects with GT/TT genotypes had higher serum levels of HDL-C, ApoAI, and the ratio of ApoAI to ApoB than the subjects with GG genotype. The levels of TC, TG, LDL-C, ApoAI, and ApoB in Han were different between the GG and GT/TT genotypes in males but not in females (<it>P </it>< 0.05-0.001), the T allele carriers had higher serum levels of TC, TG, LDL-C, ApoAI, and ApoB than the T allele noncarriers. The levels of HDL-C, ApoAI, and the ratio of ApoAI to ApoB in Mulao were correlated with the genotypes in males (<it>P </it>< 0.05-0.01) but not in females. The levels of TC, TG, HDL-C, LDL-C, ApoAI and ApoB in Han were associated with the genotypes in males (<it>P </it>< 0.05-0.001) but not in females. Serum lipid parameters were also correlated with several enviromental factors in both ethnic groups (<it>P </it>< 0.05-0.001).</p> <p>Conclusions</p> <p>The genotypic and allelic frequencies of rs16996148 SNP and the associations of the SNP and serum lipid levels are different in the Mulao and Han populations. Sex (male)-specific association of rs16996148 SNP in the <it>NCAN/CILP2/PBX4 </it>and serum lipid levels is also observed in the both ethnic groups.</p

    Sex-specific association of ACAT-1 rs1044925 SNP and serum lipid levels in the hypercholesterolemic subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acyl-CoA:cholesterol acyltransferase (ACAT) is a key enzyme in cellular cholesterol homeostasis and in atherosclerosis. The cellular cholesterol efflux correlated with serum high-density lipoprotein cholesterol (HDL-C) concentrations has shown to be impaired in hyperlipidemic mice. The present study was carried out to clarify the association of ACAT-1 rs1044925 single nucleotide polymorphism (SNP) and serum lipid levels in the hyperlipidemic subjects.</p> <p>Methods</p> <p>A total of 821 unrelated subjects (hyperlipidemia, 476; normolipidemia, 345) aged 15-80 were included in the study. Genotyping of the ACAT-1 rs1044925 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing.</p> <p>Results</p> <p>There was no significant difference in the genotypic and allelic frequencies of ACAT-1 rs1044925 SNP between the normolipidemic and hyperlipidemic subjects. The levels of total cholesterol (TC), HDL-C and apolipoprotein (Apo) AI in hyperlipidemic subjects were different between the AA and AC/CC genotypes in male but not in female (<it>P </it>< 0.05-0.01), the C allele carriers had higher serum TC, HDL-C and ApoAI levels than the C allele noncarriers. The association of genotypes and serum HDL-C and ApoAI levels in hyperlipidemia was found mainly in the male subjects with hypercholesterolemia but not in those with hypertriglyceridemia. There were no significant differences in serum lipid levels between the AA and AC/CC genotypes in the normolipidemic subjects.</p> <p>Conclusions</p> <p>The present study shows that the C allele carriers of ACAT-1 rs1044925 SNP in male hyperlipidemic subjects had higher serum TC, HDL-C and ApoAI levels than the C allele noncarriers. There is a sex (male)-specific association of ACAT-1 rs1044925 SNP and serum HDL-C and ApoAI levels in the hypercholesterolemic subjects.</p

    Protection against SHIV-KB9 Infection by Combining rDNA and rFPV Vaccines Based on HIV Multiepitope and p24 Protein in Chinese Rhesus Macaques

    Get PDF
    Developing an effective vaccine against HIV infection remains an urgent goal. We used a DNA prime/fowlpox virus boost regimen to immunize Chinese rhesus macaques. The animals were challenged intramuscularly with pathogenic molecularly cloned SHIV-KB9. Immunogenicity and protective efficacy of vaccines were investigated by measuring IFN-γ levels, monitoring HIV-specific binding antibodies, examining viral load, and analyzing CD4/CD8 ratio. Results show that, upon challenge, the vaccine group can induce a strong immune response in the body, represented by increased expression of IFN-γ, slow and steady elevated antibody production, reduced peak value of acute viral load, and increase in the average CD4/CD8 ratio. The current research suggests that rapid reaction speed, appropriate response strength, and long-lasting immune response time may be key protection factors for AIDS vaccine. The present study contributes significantly to AIDS vaccine and preclinical research

    Monoester-Diterpene Aconitum

    Get PDF
    Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC), benzoylmesaconine (BMA), and benzoylhypaconine (BHA), are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP) enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA
    corecore