20,073 research outputs found

    The electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory

    Full text link
    We have investigated the electromagnetic decays of the antitriplet and sextet charmed baryon systems with JP=12+,32+J^P= \frac{1}{2}^+, \frac{3}{2}^+ in the framework of the heavy baryon chiral perturbation theory. We first construct the chiral Lagrangians at O(p2)O(p^2) and O(p3)O(p^3). Then we calculate the electromagnetic (EM) decay amplitudes of the charmed baryon systems up to O(p3)O(p^3). With the help of the quark model, we estimate the low energy constants. The numerical results of the EM decay widths show good convergence of the chiral expansion. We notice that the two neutral EM decay processes Ξcβ€²0β†’Ξ³+Ξc0\Xi_c'^0\rightarrow\gamma+\Xi_c^0 and Ξcβˆ—β€²0β†’Ξ³+Ξc0{\Xi_c^*}'^0\rightarrow\gamma+\Xi_c^0 are strongly suppressed by the SU(3) U-spin flavor symmetry. With the same formalism, we also estimate the EM decay widths of the bottomed baryons. The EM decay widths of the heavy baryons may be measured at facilities such as LHCb and JPARC. The explicit chiral structures of the heavy baryon decay amplitudes derived in this work may be useful to the possible chiral extrapolations of the future lattice simulations of these EM decay amplitudes

    General stationary charged black holes as charged particle accelerators

    Full text link
    We study the possibility of getting infinite energy in the center of mass frame of colliding charged particles in a general stationary charged black hole. For black holes with two-fold degenerate horizon, it is found that arbitrary high center-of-mass energy can be attained, provided that one of the particle has critical angular momentum or critical charge, and the remained parameters of particles and black holes satisfy certain restriction. For black holes with multiple-fold degenerate event horizons, the restriction is released. For non-degenerate black holes, the ultra-high center-of-mass is possible to be reached by invoking the multiple scattering mechanism. We obtain a condition for the existence of innermost stable circular orbit with critical angular momentum or charge on any-fold degenerate horizons, which is essential to get ultra-high center-of-mass energy without fine-tuning problem. We also discuss the proper time spending by the particle to reach the horizon and the duality between frame dragging effect and electromagnetic interaction. Some of these general results are applied to braneworld small black holes.Comment: 23 pages, no figures, revised version accepted for publication in Phys. Rev.
    • …
    corecore