2,700 research outputs found
Downlink MIMO-NOMA for Ultra-Reliable Low-Latency Communications
© 2019 IEEE. With the emergence of the mission-critical Internet of Things applications, ultra-reliable low-latency communications are attracting a lot of attentions. Non-orthogonal multiple access (NOMA) with multiple-input multiple-output (MIMO) is one of the promising candidates to enhance connectivity, reliability, and latency performance of the emerging applications. In this paper, we derive a closed-form upper bound for the delay target violation probability in the downlink MIMO-NOMA, by applying stochastic network calculus to the Mellin transforms of service processes. A key contribution is that we prove that the infinite-length Mellin transforms resulting from the non-negligible interferences of NOMA are Cauchy convergent and can be asymptotically approached by a finite truncated binomial series in the closed form. By exploiting the asymptotically accurate truncated binomial series, another important contribution is that we identify the critical condition for the optimal power allocation of MIMO-NOMA to achieve consistent latency and reliability between the receivers. The condition is employed to minimize the total transmit power, given a latency and reliability requirement of the receivers. It is also used to prove that the minimal total transmit power needs to change linearly with the path losses, to maintain latency and reliability at the receivers. This enables the power allocation for mobile MIMO-NOMA receivers to be effectively tracked. The extensive simulations corroborate the accuracy and effectiveness of the proposed model and the identified critical condition
Multivariate Iyengar type inequalities for radial functions
Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in R^N, N>=2, and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and uni-variate author’s related results into multivariate Iyengar inequalities
Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems
Quantum simulators are controllable quantum systems that can reproduce the
dynamics of the system of interest, which are unfeasible for classical
computers. Recent developments in quantum technology enable the precise control
of individual quantum particles as required for studying complex quantum
systems. Particularly, quantum simulators capable of simulating frustrated
Heisenberg spin systems provide platforms for understanding exotic matter such
as high-temperature superconductors. Here we report the analog quantum
simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type
interactions among four spin-1/2 particles . Depending on the interaction
strength, frustration within the system emerges such that the ground state
evolves from a localized to a resonating valence-bond state. This spin-1/2
tetramer is created using the polarization states of four photons. The
single-particle addressability and tunable measurement-induced interactions
provide us insights into entanglement dynamics among individual particles. We
directly extract ground-state energies and pair-wise quantum correlations to
observe the monogamy of entanglement
Experimental realisation of Shor's quantum factoring algorithm using qubit recycling
Quantum computational algorithms exploit quantum mechanics to solve problems
exponentially faster than the best classical algorithms. Shor's quantum
algorithm for fast number factoring is a key example and the prime motivator in
the international effort to realise a quantum computer. However, due to the
substantial resource requirement, to date, there have been only four
small-scale demonstrations. Here we address this resource demand and
demonstrate a scalable version of Shor's algorithm in which the n qubit control
register is replaced by a single qubit that is recycled n times: the total
number of qubits is one third of that required in the standard protocol.
Encoding the work register in higher-dimensional states, we implement a
two-photon compiled algorithm to factor N=21. The algorithmic output is
distinguishable from noise, in contrast to previous demonstrations. These
results point to larger-scale implementations of Shor's algorithm by harnessing
scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure
In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse
Eclipses of the single-line spectroscopic binary star, epsilon Aurigae,
provide an opportunity to study the poorly-defined companion. We used the MIRC
beam combiner on the CHARA array to create interferometric images during
eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk
that is opaque and tilted, and therefore exclude alternative models for the
system. These data constrain the geometry and masses of the components,
providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010
Exploration of ecological factors related to the spatial heterogeneity of tuberculosis prevalence in P. R. China
Background: The current prevalence of tuberculosis (TB) in the People's Republic of China (P. R. China) demonstrates geographical heterogeneities, which show that the TB prevalence in the remote areas of Western China is more serious than that in the coastal plain of Eastern China. Although a lot of ecological studies have been applied in the exploration on the regional difference of disease risks, there is still a paucity of ecological studies on TB prevalence in P. R. China. Objective: To understand the underlying factors contributing to the regional inequity of TB burden in P. R. China by using an ecological approach and, thus, aiming to provide a basis to eliminate the TB spatial heterogeneity in the near future. Design: Latent ecological variables were identified by using exploratory factor analysis from data obtained from four sources, i.e. the databases of the National TB Control Programme (2001–2010) in P. R. China, the China Health Statistical Yearbook during 2002–2011, the China Statistical Yearbook during 2002–2011, and the provincial government websites in 2013. Partial least squares path modelling was chosen to construct the structural equation model to evaluate the relationship between TB prevalence and ecological variables. Furthermore, a geographically weighted regression model was used to explore the local spatial heterogeneity in the relationships. Results: The latent ecological variables in terms of ‘TB prevalence’, ‘TB investment’, ‘TB service’, ‘health investment’, ‘health level’, ‘economic level’, ‘air quality’, ‘climatic factor’ and ‘geographic factor’ were identified. With the exception of TB service and health levels, other ecological factors had explicit and significant impacts on TB prevalence to varying degrees. Additionally, each ecological factor had different impacts on TB prevalence in different regions significantly. Conclusion: Ecological factors that were found predictive of TB prevalence in P. R. China are essential to take into account in the formulation of locally comprehensive strategies and interventions aiming to tailor the TB control and prevention programme into local settings in each ecozone
Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics
The simulation of low-temperature properties of many-body systems remains one
of the major challenges in theoretical and experimental quantum information
science. We present, and demonstrate experimentally, a universal cooling method
which is applicable to any physical system that can be simulated by a quantum
computer. This method allows us to distill and eliminate hot components of
quantum states, i.e., a quantum Maxwell's demon. The experimental
implementation is realized with a quantum-optical network, and the results are
in full agreement with theoretical predictions (with fidelity higher than
0.978). These results open a new path for simulating low-temperature properties
of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material
Magnetic vortex oscillator driven by dc spin-polarized current
Transfer of angular momentum from a spin-polarized current to a ferromagnet
provides an efficient means to control the dynamics of nanomagnets. A peculiar
consequence of this spin-torque, the ability to induce persistent oscillations
of a nanomagnet by applying a dc current, has previously been reported only for
spatially uniform nanomagnets. Here we demonstrate that a quintessentially
nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale
spin valve structure, can be excited into persistent microwave-frequency
oscillations by a spin-polarized dc current. Comparison to micromagnetic
simulations leads to identification of the oscillations with a precession of
the vortex core. The oscillations, which can be obtained in essentially zero
magnetic field, exhibit linewidths that can be narrower than 300 kHz, making
these highly compact spin-torque vortex oscillator devices potential candidates
for microwave signal-processing applications, and a powerful new tool for
fundamental studies of vortex dynamics in magnetic nanostructures.Comment: 14 pages, 4 figure
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density
Rationale:
In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI).
Objective:
To characterize RyR functional properties in relation to TT proximity, at baseline and after MI.
Methods:
Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category.
Results:
In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI.
Conclusion:
TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves
- …