42,095 research outputs found
Tunable magnetization damping in transition metal ternary alloys
We show that magnetization damping in Permalloy, Ni80Fe20 (``Py''), can be
enhanced sufficiently to reduce post-switching magnetization precession to an
acceptable level by alloying with the transition metal osmium (Os). The damping
increases monotonically upon raising the Os-concentration in Py, at least up to
9% of Os. Other effects of alloying with Os are suppression of magnetization
and enhancement of in-plane anisotropy. Magnetization damping also increases
significantly upon alloying with the five other transition metals included in
this study (4d-elements: Nb, Ru, Rh; 5d-elements: Ta, Pt) but never as strongly
as with Os.Comment: 4 pages, submitted to Appl. Phys. Let
Phylogenetic analysis of Cryptosporidium isolates from captive reptiles using 18S rDNA sequence data and random amplified polymorphic DNA analys
Sequence alignment of a polymerase chain reaction-amplified 713-base pair region of the Cryptosporidium 18S rDNA gene was carried out on 15 captive reptile isolates from different geographic locations and compared to both Cryptosporidium parvum and Cryptosporidium muris isolates. Random amplified polymorphic DNA (RAPD) analysis was also performed on a smaller number of these samples. The data generated by both techniques were significantly correlated (P < 0.002), providing additional evidence to support the clonal population structure hypothesis for Cryptosporidium. Phylogenetic analysis of both 18S sequence information and RAPD analysis grouped the majority of reptile isolates together into 1 main group attributed to Cryptosporidium serpentis, which was genetically distinct but closely related to C. muris. A second genotype exhibited by 1 reptile isolate (S6) appeared to be intermediate between C. serpentis and C. muris but grouped most closely with C. muris, as it exhibited 99.15% similarity with C. muris and only 97.13% similarity with C. serpentis. The third genotype identified in 2 reptile isolates was a previously characterized 'mouse' genotype that grouped closely with bovine and human C. parvum isolates
Positive mass theorems for asymptotically AdS spacetimes with arbitrary cosmological constant
We formulate and prove the Lorentzian version of the positive mass theorems
with arbitrary negative cosmological constant for asymptotically AdS
spacetimes. This work is the continuation of the second author's recent work on
the positive mass theorem on asymptotically hyperbolic 3-manifolds.Comment: 17 pages, final version, to appear in International Journal of
Mathematic
- …