4,067 research outputs found
Microbial community pattern detection in human body habitats via ensemble clustering framework
The human habitat is a host where microbial species evolve, function, and
continue to evolve. Elucidating how microbial communities respond to human
habitats is a fundamental and critical task, as establishing baselines of human
microbiome is essential in understanding its role in human disease and health.
However, current studies usually overlook a complex and interconnected
landscape of human microbiome and limit the ability in particular body habitats
with learning models of specific criterion. Therefore, these methods could not
capture the real-world underlying microbial patterns effectively. To obtain a
comprehensive view, we propose a novel ensemble clustering framework to mine
the structure of microbial community pattern on large-scale metagenomic data.
Particularly, we first build a microbial similarity network via integrating
1920 metagenomic samples from three body habitats of healthy adults. Then a
novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is
proposed and applied onto the network to detect clustering pattern. Extensive
experiments are conducted to evaluate the effectiveness of our model on
deriving microbial community with respect to body habitat and host gender. From
clustering results, we observed that body habitat exhibits a strong bound but
non-unique microbial structural patterns. Meanwhile, human microbiome reveals
different degree of structural variations over body habitat and host gender. In
summary, our ensemble clustering framework could efficiently explore integrated
clustering results to accurately identify microbial communities, and provide a
comprehensive view for a set of microbial communities. Such trends depict an
integrated biography of microbial communities, which offer a new insight
towards uncovering pathogenic model of human microbiome.Comment: BMC Systems Biology 201
- …