9,282 research outputs found
Quantum Spin Hall Effect in Inverted Type II Semiconductors
The quantum spin Hall (QSH) state is a topologically non-trivial state of
quantum matter which preserves time-reversal symmetry; it has an energy gap in
the bulk, but topologically robust gapless states at the edge. Recently, this
novel effect has been predicted and observed in HgTe quantum wells. In this
work we predict a similar effect arising in Type-II semiconductor quantum wells
made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well
band structure exhibits an "inverted" phase similar to CdTe/HgTe quantum wells,
which is a QSH state when the Fermi level lies inside the gap. Due to the
asymmetric structure of this quantum well, the effects of inversion symmetry
breaking and inter-layer charge transfer are essential. By standard
self-consistent calculations, we show that the QSH state persists when these
corrections are included, and a quantum phase transition between the normal
insulator and the QSH phase can be electrically tuned by the gate voltage.Comment: 5 pages,4 figures. Submitted to PRL. For high resolution figures see
final published version when availabl
Clinically relevant investigation of flattening filter-free skin dose
As flattening filter-free (FFF) photon beams become readily available for treatment delivery in techniques such as SBRT, thorough investigation of skin dose from FFF photon beams is necessary under clinically relevant conditions. Using a parallel-plate PTW Markus chamber placed in a custom water-equivalent phantom, surface-dose measurements were taken at 2 × 2, 3 × 3, 4 × 4, 6 × 6, 8 × 8, 10 × 10, 20 × 20, and 30 × 30 cm2 field sizes, at 80, 90, and 100 cm source-to-surface distances (SSDs), and with fields defined by jaws and multileaf collimator (MLC) using multiple beam energies (6X, 6XFFF, 10X, and 10XFFF). The same set of measurements was repeated with the chamber at a reference depth of 10 cm. Each surface measurement was normalized by its corresponding reference depth measurement for analysis. The FFF surface doses at 100 cm SSD were higher than flattened surface doses by 45% at 2 × 2 cm2 to 13% at 20 × 20 cm2 for 6 MV energy. These surface dose differences varied to a greater degree as energy increased, ranging from +63% at 2 × 2 cm2 to -2% at 20 × 20 cm2 for 10 MV. At small field sizes, higher energy increased FFF surface dose relative to flattened surface dose; while at larger field sizes, relative FFF surface dose was higher for lower energies. At both energies investigated, decreasing SSD caused a decrease in the ratios of FFF-to-flattened surface dose. Variability with SSD of FFF-to flattened surface dose differences increased with field size and ranged from 0% to 6%. The field size at which FFF and flattened beams gave the same skin dose increased with decreasing beam energy. Surface dose was higher with MLC fields compared to jaw fields under most conditions, with the difference reaching its maximum at a field size between 4 × 4 cm2 and 6 × 6 cm2 for a given energy and SSD. This study conveyed the magnitude of surface dose in a clinically meaningful manner by reporting results normalized to 10 cm depth dose instead of depth of dose maximum
Modulatory effects of the landscape sequences on pedestrians emotional states using EEG
This study aimed to investigate the impact of specific landscape elements on pedestrians’ emotional experiences during walking. During the study, footages were recorded by participants while walking to obtain real-time visual element data, including greenery, building and road visibility. And electroencephalogram (EEG) indicators of β/α, (α+θ)/β, θ/β and θ/α ratio were collected to represent levels of arousal, fatigue, attention and relaxation. Our findings suggested strong correlations between θ/α ratio with both greenery and road visibility. Conversely, other indicators were primarily influenced by greenery and building visibility. Regarding the combined impact of elements, the most positive emotions were observed when green visibility exceeded 51%. However, the peak alertness was achieved with building visibility between 5.2% and 31%. The lowest fatigue and the highest attention level were recorded under building visibility less than 5.2%, and the highest level of relaxation occurred with road visibility less than 10%. In terms of the influence of time, the entire walking process could be delineated by the five and 8 min marks, classified into novelty, adaptation and sustained phase based on the patterns of emotional changes observed in the participants. Consequently, the visual elements and their combinations, and duration play regulatory roles in pedestrians' emotional experiences
Equiaxed Ti-based Composites With High Strength And Large Plasticity Prepared By Sintering And Crystallizing Amorphous Powder
High-performance titanium alloys with an equiaxed composite microstructure were achieved by sintering and crystallizing amorphous powder. By introducing a second phase in a β-Ti matrix, series of optimized Ti-Nb-Fe-Co-Al and Ti-Nb-Cu-Ni-Al composites, which have a microstructure composed of ultrafine-grained and equiaxed CoTi2 or (Cu,Ni)Ti2 precipitated phases surrounded by a ductile β-Ti matrix, were fabricated by sintering and crystallizing mechanically alloyed amorphous powder. The as-fabricated composites exhibit ultra-high ultimate compressive strength of 2585MPa and extremely large compressive plastic strain of around 40%, which are greater than the corresponding ones for most titanium alloys. In contrast, the alloy fabricated by sintering and crystallizing Ti-Zr-Cu-Ni-Al amorphous powder, which possesses significantly higher glass forming ability in comparison with the Ti-Nb-Fe-Co-Al and Ti-Nb-Cu-Ni-Al alloy systems, exhibits a complex microstructure with several intermetallic compounds and a typical brittle fracture feature. The deformation behavior and fracture mechanism indicate that the ultrahigh compressive strength and large plasticity of the as-fabricated equiaxed composites is induced by dislocations pinning effect of the CoTi2 or (Cu,Ni)Ti2 second phases and the interaction and multiplication of generated shear bands in the ductile β-Ti matrix, respectively. The results obtained provide basis guidelines for designing and fabricating titanium alloys with excellent mechanical properties by powder metallurgy
Comparative Mt genomics of the Tipuloidea (Diptera: Nematocera: Tipulomorpha) and its implications for the phylogeny of the Tipulomorpha
A traditionally controversial taxon, the Tipulomorpha has been frequently discussed with respect to both its familial composition and relationships with other Nematocera. The interpretation of internal relationships within the Tipuloidea, which include the Tipulidae sensu stricto, Cylindrotomidae, Pediciidae and Limoniidae, is also problematic. We sequenced the first complete mitochondrial (mt) genome of Symplecta hybrida (Meigen, 1804), which belongs to the subfamily Chioneinae of family Limoniidae, and another five nearly complete mt genomes from the Tipuloidea. We did a comparative analysis of these mt genomics and used them, along with some other representatives of the Nematocera to construct phylogenetic trees. Trees inferred by Bayesian methods strongly support a sister-group relationship between Trichoceridae and Tipuloidea. Tipulomorpha are not supported as the earliest branch of the Diptera. Furthermore, phylogenetic trees indicate that the family Limoniidae is a paraphyletic group
Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors
The Daya Bay experiment measures sin^2 2{\theta}_13 using functionally
identical antineutrino detectors located at distances of 300 to 2000 meters
from the Daya Bay nuclear power complex. Each detector consists of three nested
fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to
overflow tanks on top of the detector to allow for thermal expansion of the
liquid. Antineutrinos are detected through the inverse beta decay reaction on
the proton-rich scintillator target. A precise and continuous measurement of
the detector's central target mass is achieved by monitoring the the fluid
level in the overflow tanks with cameras and ultrasonic and capacitive sensors.
In addition, the monitoring system records detector temperature and levelness
at multiple positions. This monitoring information allows the precise
determination of the detectors' effective number of target protons during data
taking. We present the design, calibration, installation and in-situ tests of
the Daya Bay real-time antineutrino detector monitoring sensors and readout
electronics.Comment: 22 pages, 20 figures; accepted by JINST. Changes in v2: minor
revisions to incorporate editorial feedback from JINS
Influence of gauge-field fluctuations on composite fermions near the half-filled state
Taking into account the transverse gauge field fluctuations, which interact
with composite fermions, we examine the finite temperature compressibility of
the fermions as a function of an effective magnetic field ( is the density of electrons) near the half-filled state. It is
shown that, after including the lowest order gauge field correction, the
compressibility goes as for , where . Here we assume that the interaction between
the fermions is given by , where is a dependent constant. This result can be
interpreted as a divergent correction to the activation energy gap and is
consistent with the divergent renormalization of the effective mass of the
composite fermions.Comment: Plain Tex, 24 pages, 5 figures available upon reques
- …