11,958 research outputs found

    An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation

    Full text link
    In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional. For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.Comment: This paper has been accepted for publication in SCIENCE CHINA Mathematic

    Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation

    Get PDF
    We continue the study of the nonconforming multiscale finite element method (Ms- FEM) introduced in 17, 14 for second order elliptic equations with highly oscillatory coefficients. The main difficulty in MsFEM, as well as other numerical upscaling methods, is the scale resonance effect. It has been show that the leading order resonance error can be effectively removed by using an over-sampling technique. Nonetheless, there is still a secondary cell resonance error of O(Š„^2/h^2). Here, we introduce a Petrov-Galerkin MsFEM formulation with nonconforming multiscale trial functions and linear test functions. We show that the cell resonance error is eliminated in this formulation and hence the convergence rate is greatly improved. Moreover, we show that a similar formulation can be used to enhance the convergence of an immersed-interface finite element method for elliptic interface problems

    The geometric mean is a Bernstein function

    Full text link
    In the paper, the authors establish, by using Cauchy integral formula in the theory of complex functions, an integral representation for the geometric mean of nn positive numbers. From this integral representation, the geometric mean is proved to be a Bernstein function and a new proof of the well known AG inequality is provided.Comment: 10 page
    • ā€¦
    corecore